DeathReaper0965
commited on
Commit
•
1c256f5
1
Parent(s):
0b223ab
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
datasets:
|
4 |
+
- codeparrot/codeparrot-clean
|
5 |
+
tags:
|
6 |
+
- text-generation
|
7 |
+
- code-generation
|
8 |
+
- gpt2-large
|
9 |
+
widget:
|
10 |
+
- text: >-
|
11 |
+
def hello_world():
|
12 |
+
example_title: Code Generation Example 1
|
13 |
+
- text: >-
|
14 |
+
|
15 |
+
example_title: Code Generation Example 2
|
16 |
+
pipeline_tag: text-generation
|
17 |
+
inference:
|
18 |
+
parameters:
|
19 |
+
max_new_tokens: 30
|
20 |
+
temperature: 0.5
|
21 |
+
num_return_sequences: 1
|
22 |
+
do_sample: true
|
23 |
+
---
|
24 |
+
|
25 |
+
# Code Generation using GPT2-Large
|
26 |
+
This is a GPT2-large model that's further fine-tuned on the Codeparrot clean dataset with a custom metric focused on code generation. <br>
|
27 |
+
I've further trained the tokenizer initialized from the GPT2-large on the same dataset to better align the tokenization for generating code.
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
This Model has the same architecture and Parameters as the GPT2-large model. Please refer to this [link](https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf) to know more about the model details.
|
31 |
+
|
32 |
+
## Intended Use & Limitations
|
33 |
+
This model is intended to generate code for the required function based on a small description of the output required.<br>
|
34 |
+
|
35 |
+
**Note:** The model is primarily trained with an objective of code generation.
|
36 |
+
|
37 |
+
## Usage
|
38 |
+
|
39 |
+
You can use this model directly to get the summaries:
|
40 |
+
|
41 |
+
```python
|
42 |
+
import torch
|
43 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
44 |
+
|
45 |
+
# Load Code Generator LLM and tokenizer from checkpoint
|
46 |
+
tokenizer = AutoTokenizer.from_pretrained("DeathReaper0965/gpt2_large_code_generator/", )
|
47 |
+
model = AutoModelForCausalLM.from_pretrained("DeathReaper0965/gpt2_large_code_generator/")
|
48 |
+
|
49 |
+
model = model.to("cuda" if torch.cuda.is_available() else "cpu")
|
50 |
+
|
51 |
+
inputs = tokenizer("def hello_world():", return_tensors="pt").to("cuda")
|
52 |
+
outputs = model.generate(**inputs,
|
53 |
+
max_new_tokens= 30,
|
54 |
+
temperature= 0.5,
|
55 |
+
num_return_sequences= 1)
|
56 |
+
|
57 |
+
print(tokenizer.batch_decode(outputs)[0])
|
58 |
+
|
59 |
+
###########OUTPUT###########
|
60 |
+
def hello_world():
|
61 |
+
return "Hello World!"
|
62 |
+
|
63 |
+
@app.route("/hello_world")
|
64 |
+
def hello_world():
|
65 |
+
return "Hello World!"
|
66 |
+
```
|
67 |
+
|
68 |
+
> Designed and Developed with <span style="color: #e25555;">♥</span> by [Praneet](https://deathreaper0965.github.io/) | [LinkedIn](http://linkedin.com/in/deathreaper0965) | [GitHub](https://github.com/DeathReaper0965/)
|