File size: 8,879 Bytes
7c9c24c
 
c45d1ce
7c9c24c
1b77997
c45d1ce
 
7c9c24c
 
 
c45d1ce
 
 
 
 
 
 
1b77997
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c9c24c
 
9f02ff0
7c9c24c
0450fc5
7c9c24c
0450fc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b77997
 
 
 
 
 
 
 
 
 
 
 
 
 
400ed23
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
---
tags:
- long-cot-reasoning
- transformers
- mamba2
- llms
- chain-of-thought
license: apache-2.0
language:
- en
datasets:
- Daemontatox/LongCOT-Reason
- Daemontatox/alpaca_reasoning_COT
base_model:
- Qwen/Qwen2.5-14B-Instruct
pipeline_tag: text-generation
library_name: transformers
model-index:
- name: Sphinx2.0
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: wis-k/instruction-following-eval
      split: train
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 71.23
      name: averaged accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FSphinx2.0
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: SaylorTwift/bbh
      split: test
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 49.4
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FSphinx2.0
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: lighteval/MATH-Hard
      split: test
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 2.72
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FSphinx2.0
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      split: train
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 5.82
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FSphinx2.0
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 13.05
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FSphinx2.0
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 46.49
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FSphinx2.0
      name: Open LLM Leaderboard
---

![Sphinx of Reasoning](./image.webp)

# **Sphinx: The Apex of Logical Deduction and Chain-of-Thought Reasoning**

- **Developed by:** Daemontatox
- **License:** Apache-2.0
- **Base Model:** Fine-tuned from `unsloth/qwen2.5-14b-instruct-bnb-4bit`
- **Accelerated by:** [Unsloth Framework](https://github.com/unslothai/unsloth)
- **TRL-Optimized:** Integrated with Huggingface's TRL library for enhanced performance in logical reasoning.

## **Unveiling Sphinx: Master of Reasoned Thought**

Sphinx is a cutting-edge Long Chain-of-Thought (CoT) reasoning model meticulously crafted to unravel complex challenges requiring rigorous logical analysis. Built upon the robust foundation of the Qwen2.5 architecture, Sphinx excels at constructing coherent, step-by-step thought processes, providing unparalleled insight into its reasoning and ensuring clarity in its conclusions.

> _"Where complexity yields to logical clarity."_

### **Core Strengths: Reasoning, Logic, and CoT**

- **Unrivaled Chain-of-Thought (CoT) Mastery:** Engineered for dissecting intricate problems, Sphinx meticulously constructs each step of its reasoning, offering a transparent and verifiable pathway to the solution.
- **Deep Logical Reasoning Capabilities:**  Sphinx is adept at navigating complex logical structures, drawing valid inferences and forming sound conclusions through multi-layered analysis.
- **Exceptional Reasoning Fidelity:** Fine-tuned to maintain the highest standards of logical consistency, Sphinx delivers outputs that are not only correct but also demonstrably well-reasoned.
- **Efficient Long-Context Reasoning:** Leveraging the power of Unsloth, Sphinx processes extensive information efficiently, maintaining logical coherence across extended reasoning chains.
- **Explainable AI through Transparent Logic:** Sphinx's inherent CoT approach provides explicit and understandable reasoning, making its decision-making process transparent and trustworthy.

## **Model Architecture and Fine-tuning for Logical Prowess**

### **Architectural Foundation**

- **Base Model:** Qwen2.5-14B - Renowned for its strong general language understanding, forming a solid basis for specialized reasoning.
- **Parameters:** 14 billion - Providing the capacity to model intricate reasoning patterns.
- **Quantization:** 4-bit precision using BitsAndBytes (bnb) - Optimizing for accessibility without sacrificing logical reasoning accuracy.
- **Extended Reasoning Window:**  Supports inputs up to 16k tokens, crucial for accommodating the detailed context required for complex logical deductions.

### **Training Methodology: Honing Logical Acumen**

- **Frameworks:** Huggingface Transformers + TRL + Unsloth - A powerful combination for efficient training and reinforcement learning.
- **Data Sources:**  A meticulously curated collection of datasets specifically designed to challenge and refine logical reasoning skills, encompassing academic, legal, and formal logic domains.
- **Optimization Strategies:**
    - **LoRA (Low-Rank Adaptation):**  Enabling parameter-efficient fine-tuning, focusing on adapting the model for superior logical inference.
    - **Reinforcement Learning from Human Feedback (RLHF):**  Guiding the model towards generating more logically sound and human-aligned reasoning steps.

## **Sphinx's Reasoning Toolkit: Capabilities in Action**

1. **Masterful Long-CoT Generation:** Deconstructs and conquers multi-layered problems by constructing detailed, logically interconnected reasoning sequences.
2. **Explanatory Power through Logic:** Provides clear, step-by-step logical derivations for its outputs, enhancing trust and understanding.
3. **Adaptable Logical Framework:** Easily tailored to specialized reasoning tasks through targeted fine-tuning, enabling application in diverse logical domains.

## **Unlocking Potential: Applications Driven by Logic**

- **Advanced Academic Research:**  Generating in-depth, logically structured analyses for complex scientific and philosophical inquiries.
- **Robust Legal Reasoning Assistance:**  Constructing and articulating multi-step legal arguments with precision and logical rigor.
- **Transformative STEM Education:**  Guiding learners through intricate mathematical and logical problems with clear, step-by-step explanations.
- **Transparent Cognitive AI Systems:**  Powering AI systems where explainability and logical justification are paramount for decision-making.# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/Daemontatox__Sphinx2.0-details)!
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=Daemontatox%2FSphinx2.0&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!

|      Metric       |Value (%)|
|-------------------|--------:|
|**Average**        |    31.45|
|IFEval (0-Shot)    |    71.23|
|BBH (3-Shot)       |    49.40|
|MATH Lvl 5 (4-Shot)|     2.72|
|GPQA (0-shot)      |     5.82|
|MuSR (0-shot)      |    13.05|
|MMLU-PRO (5-shot)  |    46.49|

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/Daemontatox__Sphinx2.0-details)!
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=Daemontatox%2FSphinx2.0&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!

|      Metric       |Value (%)|
|-------------------|--------:|
|**Average**        |    31.45|
|IFEval (0-Shot)    |    71.23|
|BBH (3-Shot)       |    49.40|
|MATH Lvl 5 (4-Shot)|     2.72|
|GPQA (0-shot)      |     5.82|
|MuSR (0-shot)      |    13.05|
|MMLU-PRO (5-shot)  |    46.49|