phi-2-gpo-renew2-b0.001-v2-i1

This model is a fine-tuned version of DUAL-GPO/phi-2-gpo-renew2-b0.001-i0 on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0539
  • Rewards/chosen: 0.0016
  • Rewards/rejected: 0.0019
  • Rewards/accuracies: 0.4295
  • Rewards/margins: -0.0003
  • Logps/rejected: -365.2908
  • Logps/chosen: -394.6620
  • Logits/rejected: -0.7531
  • Logits/chosen: -0.8487

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.1204 0.32 100 0.0538 0.0003 0.0005 0.4400 -0.0002 -366.7078 -395.9741 -0.7404 -0.8344
0.1673 0.64 200 0.0538 0.0014 0.0014 0.4465 -0.0001 -365.8175 -394.9525 -0.7452 -0.8413
0.1395 0.96 300 0.0538 0.0016 0.0018 0.4410 -0.0002 -365.4079 -394.7079 -0.7549 -0.8511

Framework versions

  • PEFT 0.7.1
  • Transformers 4.36.2
  • Pytorch 2.1.2
  • Datasets 2.14.6
  • Tokenizers 0.15.2
Downloads last month
3
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for DUAL-GPO-2/phi-2-gpo-renew2-b0.001-v2-i1

Base model

microsoft/phi-2
Adapter
(725)
this model

Dataset used to train DUAL-GPO-2/phi-2-gpo-renew2-b0.001-v2-i1