File size: 6,084 Bytes
2954620
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import os
import sys
import time
import hashlib
import numpy as np
import requests

import logging
import functools
import tiktoken
from tqdm import tqdm
from mteb import MTEB
#from sentence_transformers import SentenceTransformer
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("main")

all_task_list = ['Classification', 'Clustering', 'Reranking', 'Retrieval', 'STS', 'PairClassification']
if len(sys.argv) > 1:
    task_list = [t for t in sys.argv[1].split(',') if t in all_task_list]
else:
    task_list = all_task_list

OPENAI_BASE_URL = os.environ.get('OPENAI_BASE_URL', '')
OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY', '')
EMB_CACHE_DIR = os.environ.get('EMB_CACHE_DIR', '.cache/embs')
REQ_OPENAI_TIMEOUT = int(os.environ.get('REQ_OPENAI_TIMEOUT', 120))
REQ_OPENAI_RETRY = int(os.environ.get('REQ_OPENAI_RETRY', 3))
REQ_OPENAI_INTERVAL = int(os.environ.get('REQ_OPENAI_INTERVAL', 60))
os.makedirs(EMB_CACHE_DIR, exist_ok=True)

def log(*args):
    print(*args, file=sys.stderr)

def uuid_for_text(text):
    return hashlib.md5(text.encode('utf8')).hexdigest()

def count_openai_tokens(text, model="text-embedding-3-large"):
    encoding = tiktoken.get_encoding("cl100k_base")
    #encoding = tiktoken.encoding_for_model(model)
    input_ids = encoding.encode(text)
    return len(input_ids)

def request_openai_emb(texts, model="text-embedding-3-large", 
        base_url='https://api.openai.com', prefix_url='/v1/embeddings', 
        timeout=4, retry=3, interval=2, caching=True):
    if isinstance(texts, str):
        texts = [texts]

    data = []
    if caching:
        for text in texts:
            emb_file = f"{EMB_CACHE_DIR}/{uuid_for_text(text)}"
            if os.path.isfile(emb_file) and os.path.getsize(emb_file) > 0:
                data.append(np.loadtxt(emb_file))
        if len(texts) == len(data):
            return data

    url = f"{OPENAI_BASE_URL}{prefix_url}" if OPENAI_BASE_URL else f"{base_url}{prefix_url}"
    headers = {
        "Authorization": f"Bearer {OPENAI_API_KEY}",
        "Content-Type": "application/json"
    }
    payload = {"input": texts, "model": model}

    data = []
    while retry > 0 and len(data) == 0:
        try:
            r = requests.post(url, headers=headers, json=payload, 
                timeout=timeout)
            res = r.json()
            for x in res["data"]:
                data.append(np.array(x["embedding"]))
        except Exception as e:
            log(f"request openai, retry {retry}, error: {e}")
        time.sleep(interval)
        retry -= 1

    if len(data) != len(texts):
        log(f"request openai, failed, texts and embs DONT match!")
        return []

    if caching and len(data) > 0:
        for text, emb in zip(texts, data):
            emb_file = f"{EMB_CACHE_DIR}/{uuid_for_text(text)}"
            np.savetxt(emb_file, emb)

    return data


class OpenaiEmbModel:

    def __init__(self, model_name, model_dim, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.model_name = model_name
        self.model_dim = model_dim

    def encode(self, sentences, batch_size=32, **kwargs):
        i = 0
        max_tokens = kwargs.get("max_tokens", 8000)
        batch_tokens = 0
        batch = []
        batch_list = []
        while i < len(sentences):
            num_tokens = count_openai_tokens(sentences[i], 
                model=self.model_name)
            if batch_tokens+num_tokens > max_tokens:
                if batch:
                    batch_list.append(batch)
                    if num_tokens > max_tokens:
                        batch = [sentences[i][:2048]]
                        batch_tokens = count_openai_tokens(sentences[i][:2048],
                            model=self.model_name)
                    else:
                        batch = [sentences[i]]
                        batch_tokens = num_tokens
                else:
                    batch_list.append([sentences[i][:2048]])
            else:
                batch.append(sentences[i])
                batch_tokens += num_tokens
            i += 1
        if batch:
            batch_list.append(batch)

        #batch_size = min(64, batch_size)
        #
        #for i in range(0, len(sentences), batch_size):
        #    batch_texts = sentences[i:i+batch_size]
        #    batch_list.append(batch_texts)

        log(f"Total sentences={len(sentences)}, batches={len(batch_list)}")
        embs = []
        waiting = 0
        for batch_idx, batch_texts in enumerate(tqdm(batch_list)):
            batch_embs = request_openai_emb(batch_texts, model=self.model_name,
                caching=kwargs.get("caching", True), 
                timeout=kwargs.get("timeout", REQ_OPENAI_TIMEOUT), 
                retry=kwargs.get("retry", REQ_OPENAI_RETRY), 
                interval=kwargs.get("interval", REQ_OPENAI_INTERVAL))

            if len(batch_texts) == len(batch_embs):
                embs.extend(batch_embs)
                waiting = waiting // 2
                log(f"The batch-{batch_idx} encoding SUCCESS! waiting={waiting}s...")
            else:
                embs.extend([np.array([0.0 for j in range(self.model_dim)]) for i in range(len(batch_texts))])
                waiting = 120 if waiting <= 0 else waiting+120
                log(f"The batch-{batch_idx} encoding FAILED {len(batch_texts)}:{len(batch_embs)}! waiting={waiting}s...")

            if waiting > 3600:
                log(f"Frequently failed, should be waiting more then 3600s, break down!!!")
                break
            if waiting > 0:
                time.sleep(waiting)

        print(f'Total encoding sentences={len(sentences)}, embeddings={len(embs)}')
        return embs


model_name = "text-embedding-3-large"
model_dim = 3072
model = OpenaiEmbModel(model_name, model_dim)

######
# test
#####
#embs = model.encode(['全国', '北京'])
#print(embs)
#exit()

# languages
task_langs=["zh", "zh-CN"]

evaluation = MTEB(task_types=task_list, task_langs=task_langs)
evaluation.run(model, output_folder=f"results/zh/{model_name.split('/')[-1]}")