xiaowenbin commited on
Commit
2954620
·
verified ·
1 Parent(s): 8fa4182

Upload mteb_eval_openai.py

Browse files
Files changed (1) hide show
  1. mteb_eval_openai.py +175 -0
mteb_eval_openai.py ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ import time
4
+ import hashlib
5
+ import numpy as np
6
+ import requests
7
+
8
+ import logging
9
+ import functools
10
+ import tiktoken
11
+ from tqdm import tqdm
12
+ from mteb import MTEB
13
+ #from sentence_transformers import SentenceTransformer
14
+ logging.basicConfig(level=logging.INFO)
15
+ logger = logging.getLogger("main")
16
+
17
+ all_task_list = ['Classification', 'Clustering', 'Reranking', 'Retrieval', 'STS', 'PairClassification']
18
+ if len(sys.argv) > 1:
19
+ task_list = [t for t in sys.argv[1].split(',') if t in all_task_list]
20
+ else:
21
+ task_list = all_task_list
22
+
23
+ OPENAI_BASE_URL = os.environ.get('OPENAI_BASE_URL', '')
24
+ OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY', '')
25
+ EMB_CACHE_DIR = os.environ.get('EMB_CACHE_DIR', '.cache/embs')
26
+ REQ_OPENAI_TIMEOUT = int(os.environ.get('REQ_OPENAI_TIMEOUT', 120))
27
+ REQ_OPENAI_RETRY = int(os.environ.get('REQ_OPENAI_RETRY', 3))
28
+ REQ_OPENAI_INTERVAL = int(os.environ.get('REQ_OPENAI_INTERVAL', 60))
29
+ os.makedirs(EMB_CACHE_DIR, exist_ok=True)
30
+
31
+ def log(*args):
32
+ print(*args, file=sys.stderr)
33
+
34
+ def uuid_for_text(text):
35
+ return hashlib.md5(text.encode('utf8')).hexdigest()
36
+
37
+ def count_openai_tokens(text, model="text-embedding-3-large"):
38
+ encoding = tiktoken.get_encoding("cl100k_base")
39
+ #encoding = tiktoken.encoding_for_model(model)
40
+ input_ids = encoding.encode(text)
41
+ return len(input_ids)
42
+
43
+ def request_openai_emb(texts, model="text-embedding-3-large",
44
+ base_url='https://api.openai.com', prefix_url='/v1/embeddings',
45
+ timeout=4, retry=3, interval=2, caching=True):
46
+ if isinstance(texts, str):
47
+ texts = [texts]
48
+
49
+ data = []
50
+ if caching:
51
+ for text in texts:
52
+ emb_file = f"{EMB_CACHE_DIR}/{uuid_for_text(text)}"
53
+ if os.path.isfile(emb_file) and os.path.getsize(emb_file) > 0:
54
+ data.append(np.loadtxt(emb_file))
55
+ if len(texts) == len(data):
56
+ return data
57
+
58
+ url = f"{OPENAI_BASE_URL}{prefix_url}" if OPENAI_BASE_URL else f"{base_url}{prefix_url}"
59
+ headers = {
60
+ "Authorization": f"Bearer {OPENAI_API_KEY}",
61
+ "Content-Type": "application/json"
62
+ }
63
+ payload = {"input": texts, "model": model}
64
+
65
+ data = []
66
+ while retry > 0 and len(data) == 0:
67
+ try:
68
+ r = requests.post(url, headers=headers, json=payload,
69
+ timeout=timeout)
70
+ res = r.json()
71
+ for x in res["data"]:
72
+ data.append(np.array(x["embedding"]))
73
+ except Exception as e:
74
+ log(f"request openai, retry {retry}, error: {e}")
75
+ time.sleep(interval)
76
+ retry -= 1
77
+
78
+ if len(data) != len(texts):
79
+ log(f"request openai, failed, texts and embs DONT match!")
80
+ return []
81
+
82
+ if caching and len(data) > 0:
83
+ for text, emb in zip(texts, data):
84
+ emb_file = f"{EMB_CACHE_DIR}/{uuid_for_text(text)}"
85
+ np.savetxt(emb_file, emb)
86
+
87
+ return data
88
+
89
+
90
+ class OpenaiEmbModel:
91
+
92
+ def __init__(self, model_name, model_dim, *args, **kwargs):
93
+ super().__init__(*args, **kwargs)
94
+ self.model_name = model_name
95
+ self.model_dim = model_dim
96
+
97
+ def encode(self, sentences, batch_size=32, **kwargs):
98
+ i = 0
99
+ max_tokens = kwargs.get("max_tokens", 8000)
100
+ batch_tokens = 0
101
+ batch = []
102
+ batch_list = []
103
+ while i < len(sentences):
104
+ num_tokens = count_openai_tokens(sentences[i],
105
+ model=self.model_name)
106
+ if batch_tokens+num_tokens > max_tokens:
107
+ if batch:
108
+ batch_list.append(batch)
109
+ if num_tokens > max_tokens:
110
+ batch = [sentences[i][:2048]]
111
+ batch_tokens = count_openai_tokens(sentences[i][:2048],
112
+ model=self.model_name)
113
+ else:
114
+ batch = [sentences[i]]
115
+ batch_tokens = num_tokens
116
+ else:
117
+ batch_list.append([sentences[i][:2048]])
118
+ else:
119
+ batch.append(sentences[i])
120
+ batch_tokens += num_tokens
121
+ i += 1
122
+ if batch:
123
+ batch_list.append(batch)
124
+
125
+ #batch_size = min(64, batch_size)
126
+ #
127
+ #for i in range(0, len(sentences), batch_size):
128
+ # batch_texts = sentences[i:i+batch_size]
129
+ # batch_list.append(batch_texts)
130
+
131
+ log(f"Total sentences={len(sentences)}, batches={len(batch_list)}")
132
+ embs = []
133
+ waiting = 0
134
+ for batch_idx, batch_texts in enumerate(tqdm(batch_list)):
135
+ batch_embs = request_openai_emb(batch_texts, model=self.model_name,
136
+ caching=kwargs.get("caching", True),
137
+ timeout=kwargs.get("timeout", REQ_OPENAI_TIMEOUT),
138
+ retry=kwargs.get("retry", REQ_OPENAI_RETRY),
139
+ interval=kwargs.get("interval", REQ_OPENAI_INTERVAL))
140
+
141
+ if len(batch_texts) == len(batch_embs):
142
+ embs.extend(batch_embs)
143
+ waiting = waiting // 2
144
+ log(f"The batch-{batch_idx} encoding SUCCESS! waiting={waiting}s...")
145
+ else:
146
+ embs.extend([np.array([0.0 for j in range(self.model_dim)]) for i in range(len(batch_texts))])
147
+ waiting = 120 if waiting <= 0 else waiting+120
148
+ log(f"The batch-{batch_idx} encoding FAILED {len(batch_texts)}:{len(batch_embs)}! waiting={waiting}s...")
149
+
150
+ if waiting > 3600:
151
+ log(f"Frequently failed, should be waiting more then 3600s, break down!!!")
152
+ break
153
+ if waiting > 0:
154
+ time.sleep(waiting)
155
+
156
+ print(f'Total encoding sentences={len(sentences)}, embeddings={len(embs)}')
157
+ return embs
158
+
159
+
160
+ model_name = "text-embedding-3-large"
161
+ model_dim = 3072
162
+ model = OpenaiEmbModel(model_name, model_dim)
163
+
164
+ ######
165
+ # test
166
+ #####
167
+ #embs = model.encode(['全国', '北京'])
168
+ #print(embs)
169
+ #exit()
170
+
171
+ # languages
172
+ task_langs=["zh", "zh-CN"]
173
+
174
+ evaluation = MTEB(task_types=task_list, task_langs=task_langs)
175
+ evaluation.run(model, output_folder=f"results/zh/{model_name.split('/')[-1]}")