EDIT:

Always check my space for the latest benchmark results for my models!

OmniTrixAI

OmniTrixAI is a merge of the following models using LazyMergekit:

🧩 Configuration

models:
  - model: senseable/WestLake-7B-v2
    # No parameters necessary for base model
  - model: mlabonne/NeuralBeagle14-7B
    parameters:
      density: 0.65
      weight: 0.40
  - model: FelixChao/WestSeverus-7B-DPO-v2
    parameters:
      density: 0.45
      weight: 0.26
  - model: CultriX/MergeTrix-7B-v2
    parameters:
      density: 0.55
      weight: 0.34
merge_method: dare_ties
base_model: senseable/WestLake-7B-v2
parameters:
  int8_mask: true
dtype: float16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "CultriX/OmniTrixAI"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
36
Safetensors
Model size
7.24B params
Tensor type
FP16
Β·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for CultriX/OmniTrixAI