CrystalMistral-24B

CrystalMistral-24B is a Mixure of Experts (MoE) made with the following models using LazyMergekit:

🧩 Configuration

base_model: eren23/dpo-binarized-NeuralTrix-7B
gate_mode: hidden
dtype: bfloat16
experts:
  - source_model: eren23/dpo-binarized-NeuralTrix-7B
    positive_prompts:
      - "Generate a response to a given situation"
      - "Explain the concept of climate change"
  - source_model: macadeliccc/WestLake-7B-v2-laser-truthy-dpo
    positive_prompts:
      - "What is the capital of France?"
      - "Who wrote the novel 'Pride and Prejudice'?"
  - source_model: Weyaxi/OpenHermes-2.5-neural-chat-v3-2-Slerp
    positive_prompts:
      - "Write a short poem about spring"
      - "Design a logo for a tech startup called 'GreenLeaf'"
  - source_model: cognitivecomputations/WestLake-7B-v2-laser
    positive_prompts:
      - "Solve the equation x^2 +  3x -  10 =  0"
      - "Calculate the area of a circle with radius  5 units"

πŸ’» Usage

!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Crystalcareai/CrystalMistral-24B"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
15
Safetensors
Model size
24.2B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Crystalcareai/CrystalMistral-24B