File size: 2,978 Bytes
f712e6f 206b412 f712e6f 206b412 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
---
base_model: openbmb/MiniCPM-2B-sft-bf16
tags:
- generated_from_trainer
model-index:
- name: qlora-out
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: openbmb/MiniCPM-2B-sft-bf16
load_in_8bit: false
load_in_4bit: false
strict: false
push_dataset_to_hub:
datasets:
- path: teknium/GPT4-LLM-Cleaned
type: alpaca
dataset_prepared_path:
val_set_size: 0.05
adapter:
lora_model_dir:
sequence_len: 4096
max_packed_sequence_len:
lora_r: 8
lora_alpha: 32
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
output_dir: ./qlora-out
gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 1.5
optimizer: paged_adamw_8bit
torchdistx_path:
lr_scheduler: cosine
learning_rate: 0.0001
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention: true
flash_attention:
gptq_groupsize:
gptq_model_v1:
warmup_steps: 10
evals_per_epoch: 2
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
trust_remote_code: true
```
</details><br>
# qlora-out
This model is a fine-tuned version of [openbmb/MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0525
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1.5
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.0903 | 0.0 | 1 | 1.7199 |
| 0.8959 | 0.5 | 1620 | 1.1007 |
| 0.995 | 1.0 | 3240 | 1.0342 |
| 0.864 | 1.5 | 4860 | 1.0525 |
### Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0
|