Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: openbmb/MiniCPM-2B-sft-bf16
load_in_8bit: false
load_in_4bit: false
strict: false
push_dataset_to_hub:
datasets:
  - path: teknium/GPT4-LLM-Cleaned
    type: alpaca
dataset_prepared_path:
val_set_size: 0.05
adapter:
lora_model_dir:
sequence_len: 4096
max_packed_sequence_len:
lora_r: 8
lora_alpha: 32
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
output_dir: ./qlora-out
gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 1.5
optimizer: paged_adamw_8bit
torchdistx_path:
lr_scheduler: cosine
learning_rate: 0.0001
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention: true
flash_attention:
gptq_groupsize:
gptq_model_v1:
warmup_steps: 10
evals_per_epoch: 2
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
trust_remote_code: true

qlora-out

This model is a fine-tuned version of openbmb/MiniCPM-2B-sft-bf16 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0525

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1.5

Training results

Training Loss Epoch Step Validation Loss
1.0903 0.0 1 1.7199
0.8959 0.5 1620 1.1007
0.995 1.0 3240 1.0342
0.864 1.5 4860 1.0525

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
15
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support model that require custom code execution.

Model tree for Crystalcareai/CrystalMiniCPM

Finetuned
(9)
this model