SetFit
This is a SetFit model that can be used for Text Classification. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 384 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
bug |
|
non-bug |
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("Switch Framer and Deframer to use Mallocator Pattern
| | |
|:---|:---|
|**_F´ Version_**| |
|**_Affected Component_**| |
---
## Problem Description
Mallocator pattern is preferred over member-allocated buffers.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 4 | 124.1383 | 2486 |
Label | Training Sample Count |
---|---|
bug | 296 |
non-bug | 304 |
Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0007 | 1 | 0.447 | - |
0.0333 | 50 | 0.2333 | - |
0.0667 | 100 | 0.083 | - |
0.1 | 150 | 0.039 | - |
0.1333 | 200 | 0.0354 | - |
0.1667 | 250 | 0.0177 | - |
0.2 | 300 | 0.0053 | - |
0.2333 | 350 | 0.0004 | - |
0.2667 | 400 | 0.0027 | - |
0.3 | 450 | 0.0015 | - |
0.3333 | 500 | 0.002 | - |
0.3667 | 550 | 0.0003 | - |
0.4 | 600 | 0.0001 | - |
0.4333 | 650 | 0.0001 | - |
0.4667 | 700 | 0.0001 | - |
0.5 | 750 | 0.0001 | - |
0.5333 | 800 | 0.0001 | - |
0.5667 | 850 | 0.0001 | - |
0.6 | 900 | 0.0001 | - |
0.6333 | 950 | 0.0001 | - |
0.6667 | 1000 | 0.0001 | - |
0.7 | 1050 | 0.0 | - |
0.7333 | 1100 | 0.0 | - |
0.7667 | 1150 | 0.0001 | - |
0.8 | 1200 | 0.0 | - |
0.8333 | 1250 | 0.0001 | - |
0.8667 | 1300 | 0.0 | - |
0.9 | 1350 | 0.0 | - |
0.9333 | 1400 | 0.0001 | - |
0.9667 | 1450 | 0.0 | - |
1.0 | 1500 | 0.0 | - |
Framework Versions
- Python: 3.11.6
- SetFit: 1.1.0
- Sentence Transformers: 3.0.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 75
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.