deit-cvc-drop-aug

This model is a fine-tuned version of facebook/deit-base-distilled-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5066
  • Precision: 0.6957
  • Recall: 0.8
  • F1: 0.7442
  • Accuracy: 0.725

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 17
  • gradient_accumulation_steps: 6
  • total_train_batch_size: 96
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.5453 0.27 100 0.4824 0.7776 0.7726 0.7751 0.7696
0.4324 0.54 200 0.4796 0.8033 0.7279 0.7637 0.7686
0.4042 0.82 300 0.3790 0.7697 0.9608 0.8547 0.8321
0.3849 1.09 400 0.4100 0.8125 0.8198 0.8161 0.8102
0.3621 1.36 500 0.3689 0.8099 0.8967 0.8511 0.8387
0.3457 1.63 600 0.3313 0.7896 0.9543 0.8642 0.8459
0.3443 1.9 700 0.3424 0.7836 0.9528 0.8600 0.8405
0.3287 2.18 800 0.3308 0.8206 0.8947 0.8561 0.8454
0.3224 2.45 900 0.4546 0.8481 0.6624 0.7438 0.7655
0.3096 2.72 1000 0.3402 0.8300 0.8754 0.8521 0.8438
0.3095 2.99 1100 0.3691 0.8035 0.9076 0.8524 0.8385
0.2901 3.27 1200 0.3643 0.8008 0.8982 0.8467 0.8329
0.2939 3.54 1300 0.3021 0.8047 0.9613 0.8760 0.8602
0.2946 3.81 1400 0.3617 0.8363 0.8322 0.8342 0.8301
0.2856 4.08 1500 0.4884 0.8401 0.7850 0.8116 0.8127
0.2683 4.35 1600 0.3540 0.841 0.8352 0.8381 0.8341
0.2724 4.63 1700 0.3078 0.8391 0.8957 0.8665 0.8581
0.2685 4.9 1800 0.2913 0.8455 0.8967 0.8704 0.8627
0.2449 5.17 1900 0.3866 0.8465 0.8515 0.8490 0.8443
0.2468 5.44 2000 0.3072 0.8406 0.8952 0.8670 0.8589
0.2557 5.71 2100 0.3735 0.8595 0.7900 0.8233 0.8257
0.25 5.99 2200 0.3117 0.8755 0.8376 0.8561 0.8553
0.2256 6.26 2300 0.3264 0.8407 0.8913 0.8653 0.8574
0.234 6.53 2400 0.3617 0.8950 0.7572 0.8203 0.8295
0.2259 6.8 2500 0.3284 0.8476 0.8893 0.8679 0.8609
0.2261 7.07 2600 0.3486 0.9034 0.7805 0.8375 0.8443
0.2087 7.35 2700 0.3971 0.8628 0.8118 0.8365 0.8369
0.2035 7.62 2800 0.3106 0.8722 0.8942 0.8831 0.8783
0.2116 7.89 2900 0.3734 0.8805 0.8083 0.8429 0.8451
0.1956 8.16 3000 0.3443 0.8612 0.8654 0.8633 0.8591
0.1826 8.44 3100 0.3795 0.8908 0.7900 0.8374 0.8423
0.1918 8.71 3200 0.3362 0.8894 0.8267 0.8569 0.8581
0.1886 8.98 3300 0.3259 0.8589 0.8798 0.8693 0.8640
0.1716 9.25 3400 0.4269 0.8621 0.8347 0.8481 0.8464
0.1654 9.52 3500 0.4066 0.8881 0.8317 0.8590 0.8597
0.1625 9.8 3600 0.3927 0.8882 0.8128 0.8488 0.8512
0.1659 10.07 3700 0.3797 0.8895 0.8193 0.8529 0.8548
0.1519 10.34 3800 0.4089 0.8808 0.8217 0.8502 0.8512
0.1484 10.61 3900 0.3865 0.8853 0.8237 0.8534 0.8546
0.1427 10.88 4000 0.4347 0.8892 0.8009 0.8427 0.8464
0.1375 11.16 4100 0.4688 0.8878 0.8213 0.8532 0.8548
0.1276 11.43 4200 0.4687 0.8932 0.7974 0.8426 0.8469
0.1275 11.7 4300 0.4493 0.8936 0.8009 0.8447 0.8487
0.1349 11.97 4400 0.4618 0.8975 0.7825 0.8361 0.8423
0.1217 12.24 4500 0.4636 0.8987 0.7974 0.8450 0.8497
0.1211 12.52 4600 0.4527 0.8815 0.8307 0.8553 0.8556
0.1164 12.79 4700 0.4669 0.8950 0.8123 0.8516 0.8546
0.1119 13.06 4800 0.4617 0.8875 0.8148 0.8496 0.8517
0.11 13.33 4900 0.4718 0.8894 0.8103 0.8480 0.8507
0.1138 13.61 5000 0.4892 0.8939 0.7989 0.8437 0.8479
0.1058 13.88 5100 0.4725 0.8875 0.8108 0.8474 0.8500
0.1042 14.15 5200 0.4788 0.8908 0.8064 0.8465 0.8497
0.107 14.42 5300 0.4759 0.8900 0.8073 0.8467 0.8497
0.1047 14.69 5400 0.4767 0.8894 0.8064 0.8458 0.8489
0.1085 14.97 5500 0.4769 0.8894 0.8064 0.8458 0.8489

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
15
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Coelhomatias/deit-cvc-drop-aug

Finetuned
(72)
this model