Edit model card

finetuned-bert-base-german-cased

This model is a fine-tuned version of bert-base-german-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4021
  • Accuracy: 0.9076
  • F1: 0.9079
  • Per Class F1: {'Web': 0.973293768545994, 'Panorama': 0.8637681159420288, 'International': 0.9078498293515358, 'Wirtschaft': 0.891304347826087, 'Sport': 0.9916666666666667, 'Inland': 0.825242718446602, 'Etat': 0.9160305343511451, 'Wissenschaft': 0.8717948717948718, 'Kultur': 0.8828828828828829}
  • Per Class Accuracy: {'Web': 0.9704142011834319, 'Panorama': 0.8418079096045198, 'International': 0.9366197183098591, 'Wirtschaft': 0.9111111111111111, 'Sport': 0.9916666666666667, 'Inland': 0.8173076923076923, 'Etat': 0.9375, 'Wissenschaft': 0.85, 'Kultur': 0.8596491228070176}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Per Class F1 Per Class Accuracy
0.525 1.0 1156 0.3350 0.8920 0.8919 {'Web': 0.9583333333333334, 'Panorama': 0.8402366863905326, 'International': 0.8933333333333333, 'Wirtschaft': 0.8741258741258741, 'Sport': 0.9876543209876543, 'Inland': 0.8309178743961353, 'Etat': 0.8617886178861788, 'Wissenschaft': 0.8648648648648649, 'Kultur': 0.8571428571428572} {'Web': 0.9583333333333334, 'Panorama': 0.8352941176470589, 'International': 0.8993288590604027, 'Wirtschaft': 0.8620689655172413, 'Sport': 0.975609756097561, 'Inland': 0.819047619047619, 'Etat': 0.9464285714285714, 'Wissenschaft': 0.8888888888888888, 'Kultur': 0.8275862068965517}
0.3553 2.0 2312 0.3731 0.9086 0.9090 {'Web': 0.960960960960961, 'Panorama': 0.8703170028818443, 'International': 0.9041095890410958, 'Wirtschaft': 0.8970588235294118, 'Sport': 0.995850622406639, 'Inland': 0.8396226415094339, 'Etat': 0.9104477611940298, 'Wissenschaft': 0.8793103448275862, 'Kultur': 0.8807339449541284} {'Web': 0.9696969696969697, 'Panorama': 0.8435754189944135, 'International': 0.9361702127659575, 'Wirtschaft': 0.9312977099236641, 'Sport': 0.9917355371900827, 'Inland': 0.8090909090909091, 'Etat': 0.9104477611940298, 'Wissenschaft': 0.864406779661017, 'Kultur': 0.8727272727272727}
0.3083 3.0 3468 0.4021 0.9076 0.9079 {'Web': 0.973293768545994, 'Panorama': 0.8637681159420288, 'International': 0.9078498293515358, 'Wirtschaft': 0.891304347826087, 'Sport': 0.9916666666666667, 'Inland': 0.825242718446602, 'Etat': 0.9160305343511451, 'Wissenschaft': 0.8717948717948718, 'Kultur': 0.8828828828828829} {'Web': 0.9704142011834319, 'Panorama': 0.8418079096045198, 'International': 0.9366197183098591, 'Wirtschaft': 0.9111111111111111, 'Sport': 0.9916666666666667, 'Inland': 0.8173076923076923, 'Etat': 0.9375, 'Wissenschaft': 0.85, 'Kultur': 0.8596491228070176}

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.3.1
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
10
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for CodeWithSwap01/finetuned-bert-base-german-cased

Finetuned
(113)
this model