Lesions Segmentation in Fundus

Introduction

We focus on the semantic segmentations of:

  1. Cotton Wool Spot
  2. Exudates
  3. Hemmorrhages
  4. Microaneurysms

For an easier use of the models, we refer to cleaned-up version of the code provided in the fundus lesions toolkit.

Architecture

The model uses unet_seresnext50_32x4d as architecture. The implementation is taken from torchSeg

Training datasets

The model was trained on the following datasets: DDR, FGADR, IDRID, MESSIDOR, RETLES

Resolution

The image resolution for training was set to 1024 x 1024.

Downloads last month
7,876
Safetensors
Model size
34.6M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Collection including ClementP/fundus-lesions-segmentation-unet_seresnext50_32x4d

Evaluation results

  • AUC Precision Recall - IDRID COTTON_WOOL_SPOT - COTTON_WOOL_SPOT on IDRID
    self-reported
    0.670
  • AUC Precision Recall - IDRID EXUDATES - EXUDATES on IDRID
    self-reported
    0.786
  • AUC Precision Recall - IDRID HEMORRHAGES - HEMORRHAGES on IDRID
    self-reported
    0.674
  • AUC Precision Recall - IDRID MICROANEURYSMS - MICROANEURYSMS on IDRID
    self-reported
    0.398
  • AUC Precision Recall - FGADR COTTON_WOOL_SPOT - COTTON_WOOL_SPOT on FGADR
    self-reported
    0.445
  • AUC Precision Recall - FGADR EXUDATES - EXUDATES on FGADR
    self-reported
    0.695
  • AUC Precision Recall - FGADR HEMORRHAGES - HEMORRHAGES on FGADR
    self-reported
    0.651
  • AUC Precision Recall - FGADR MICROANEURYSMS - MICROANEURYSMS on FGADR
    self-reported
    0.290
  • AUC Precision Recall - MESSIDOR COTTON_WOOL_SPOT - COTTON_WOOL_SPOT on MESSIDOR
    self-reported
    0.331
  • AUC Precision Recall - MESSIDOR EXUDATES - EXUDATES on MESSIDOR
    self-reported
    0.712