Edit model card

distilbert-base-uncased-finetuned-synthetic-finetuned-synthetic

This model is a fine-tuned version of Chrisantha/distilbert-base-uncased-finetuned-synthetic on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4081

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
No log 1.0 1 2.9242
0.5836 2.0 2 2.5911
0.5836 3.0 3 2.7194
0.782 4.0 4 2.3194
0.782 5.0 5 2.1952
1.3155 6.0 6 2.1321
1.3155 7.0 7 2.2769
0.596 8.0 8 2.2093
0.596 9.0 9 2.4133
0.817 10.0 10 2.4370
0.817 11.0 11 2.1859
0.7962 12.0 12 2.1760
0.7962 13.0 13 1.9116
0.7554 14.0 14 1.7670
0.7554 15.0 15 1.7386
0.4256 16.0 16 1.6506
0.4256 17.0 17 1.5478
0.6326 18.0 18 1.5998
0.6326 19.0 19 1.6936
0.493 20.0 20 1.6938
0.493 21.0 21 1.7659
0.5194 22.0 22 1.8872
0.5194 23.0 23 1.7004
0.4438 24.0 24 1.6653
0.4438 25.0 25 1.5889
0.5761 26.0 26 1.4914
0.5761 27.0 27 1.3813
0.395 28.0 28 1.4385
0.395 29.0 29 1.4067
0.4681 30.0 30 1.4021
0.4681 31.0 31 1.4172
0.6326 32.0 32 1.4502
0.6326 33.0 33 1.5628
0.3545 34.0 34 1.6276
0.3545 35.0 35 1.6164
0.4313 36.0 36 1.7040
0.4313 37.0 37 1.6950
0.3883 38.0 38 1.6429
0.3883 39.0 39 1.6180
0.5155 40.0 40 1.5417
0.5155 41.0 41 1.4499
0.3546 42.0 42 1.3885
0.3546 43.0 43 1.3061
0.2205 44.0 44 1.2986
0.2205 45.0 45 1.2861
0.2851 46.0 46 1.3785
0.2851 47.0 47 1.4008
0.3057 48.0 48 1.4402
0.3057 49.0 49 1.4538
0.3449 50.0 50 1.5073
0.3449 51.0 51 1.5050
0.1664 52.0 52 1.4939
0.1664 53.0 53 1.4691
0.1484 54.0 54 1.2829
0.1484 55.0 55 1.3112
0.3156 56.0 56 1.2328
0.3156 57.0 57 1.1700
0.379 58.0 58 1.1190
0.379 59.0 59 1.1429
0.2475 60.0 60 1.1544
0.2475 61.0 61 1.2303
0.2282 62.0 62 1.3118
0.2282 63.0 63 1.3701
0.2216 64.0 64 1.3705
0.2216 65.0 65 1.4848
0.1768 66.0 66 1.4744
0.1768 67.0 67 1.5796
0.1621 68.0 68 1.5674
0.1621 69.0 69 1.5873
0.3016 70.0 70 1.5756
0.3016 71.0 71 1.6496
0.2548 72.0 72 1.5922
0.2548 73.0 73 1.5911
0.2878 74.0 74 1.4912
0.2878 75.0 75 1.5303
0.2045 76.0 76 1.5293
0.2045 77.0 77 1.4076
0.219 78.0 78 1.4773
0.219 79.0 79 1.3878
0.1396 80.0 80 1.3349
0.1396 81.0 81 1.3670
0.166 82.0 82 1.4015
0.166 83.0 83 1.4132
0.2982 84.0 84 1.4478
0.2982 85.0 85 1.4803
0.1199 86.0 86 1.4667
0.1199 87.0 87 1.5402
0.1982 88.0 88 1.5515
0.1982 89.0 89 1.5189
0.1816 90.0 90 1.5545
0.1816 91.0 91 1.4814
0.1779 92.0 92 1.4943
0.1779 93.0 93 1.4430
0.0785 94.0 94 1.4865
0.0785 95.0 95 1.4919
0.1108 96.0 96 1.5035
0.1108 97.0 97 1.4088
0.2581 98.0 98 1.4104
0.2581 99.0 99 1.4549
0.1738 100.0 100 1.3761

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Chrisantha/distilbert-base-uncased-finetuned-synthetic-finetuned-synthetic

Unable to build the model tree, the base model loops to the model itself. Learn more.