EndoSAM

Fine-tune for endoscope clapster segmentation (adapted from SurgicalSAM but provided all scripts for fine-tune)

Installation (tested on Ubuntu 20.04.6 LTS x86_64)

git clone https://huggingface.co/ChrisXiao/EndoSAM
cd EndoSAM
conda env create -f environment.yml
conda activate sam

If conda cannot install successfully, try

conda create -y -n sam python=3.10.11
conda activate sam
pip install -r requirements.txt

Usage

  • Download (using wget or manual way) the SAM model checkpoint and place it into sam_weightsfolder, click the links below to download the checkpoint for the corresponding model type.

  • Run the script (change the config file for play)

cd endoSAM
python train.py --cfg ../config/finetune.yaml
  • GPU RAM Requirement
    Even though this is the fine-tune work, it requires a large GPU RAM. We tested on the EndoVis2017 [1] and EndoVis2018 [2] Dataset and image resolution is 1024 x 1024 with initial processing for the SAM. Use suitable batch size based on the VRAM you have
    • Batch Size 1 -> 6 GB RAM
    • Batch Size 2 -> 12 GB RAM
    • Batch Size 4 -> 21 GB RAM
    • Batch Size 8 -> 33 GB RAM

The training checkpoints, best model, loss plots and log files will be saved in thelog_folder, model_folder, ckpt_folder and plot_folderyou provide in the config file respectively.

Inference

python test.py --cfg ../config/finetune.yaml

The prediction results will be saved into the test_folder you provide in the config file.

Reference

[1] Allan, M.; Shvets, A.; Kurmann, T.; Zhang, Z.; Duggal, R.; Su, Y.-H.; Rieke, N.; Laina, I.; Kalavakonda, N.; Bodenstedt, S.; Herrera, L.; Li, W.; Iglovikov, V.; Luo, H.; Yang, J.; Stoyanov, D.; Maier-Hein, L.; Speidel, S.; and Azizian, M. 2019. 2017 Robotic Instrument Segmentation Challenge. arXiv:1902.06426.

[2] Allan, M.; Kondo, S.; Bodenstedt, S.; Leger, S.; Kadkhodamohammadi, R.; Luengo, I.; Fuentes, F.; Flouty, E.; Mohammed, A.; Pedersen, M.; Kori, A.; Alex, V.; Krishnamurthi, G.; Rauber, D.; Mendel, R.; Palm, C.; Bano, S.; Saibro, G.; Shih, C.-S.; Chiang, H.-A.; Zhuang, J.; Yang, J.; Iglovikov, V.; Dobrenkii, A.; Reddiboina, M.; Reddy, A.; Liu, X.; Gao, C.; Unberath, M.; Kim, M.; Kim, C.; Kim, C.; Kim, H.; Lee, G.; Ullah, I.; Luna, M.; Park, S. H.; Azizian, M.; Stoyanov, D.; Maier-Hein, L.; and Speidel, S. 2020. 2018 Robotic Scene Segmentation Challenge. arXiv:2001.11190.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Model tree for ChrisXiao/EndoSAM

Finetuned
(1)
this model