Edit model card
Map of positive probabilities per country.

bert2gpt2_med_v4

This model is a fine-tuned version of Chemsseddine/bert2gpt2_med_v3 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4780
  • Rouge1: 36.7502
  • Rouge2: 18.5992
  • Rougel: 36.2566
  • Rougelsum: 36.161
  • Gen Len: 22.96

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 169 1.4796 33.9893 16.2462 33.5685 33.4738 22.42
No log 2.0 338 1.4404 34.0811 16.219 34.0206 33.9139 22.76
1.0815 3.0 507 1.4078 35.2755 18.2266 34.9186 34.9052 22.63
1.0815 4.0 676 1.4207 34.0146 17.4167 33.9904 33.9735 22.92
1.0815 5.0 845 1.4285 35.2093 17.3269 35.1023 35.222 22.75
0.4699 6.0 1014 1.4607 34.5503 16.9067 34.6404 34.5957 22.8
0.4699 7.0 1183 1.4469 35.0539 17.0677 34.7607 34.8734 22.73
0.4699 8.0 1352 1.4632 35.2308 17.9663 35.1657 35.1012 22.9
0.2522 9.0 1521 1.4734 35.5699 18.53 35.4927 35.3747 22.84
0.2522 10.0 1690 1.4780 36.7502 18.5992 36.2566 36.161 22.96

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.11.0+cu113
  • Datasets 2.3.2
  • Tokenizers 0.12.1
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.