tags:
- merge
- mergekit
- lazymergekit
- not-for-all-audiences
- nsfw
- rp
- roleplay
- role-play
license: llama3
language:
- en
pipeline_tag: text-generation
base_model:
- Sao10K/L3-8B-Stheno-v3.2
- ChaoticNeutrals/Poppy_Porpoise-1.0-L3-8B
- Nitral-AI/Hathor_Stable-v0.2-L3-8B
- NeverSleep/Llama-3-Lumimaid-8B-v0.1-OAS
- Hastagaras/Jamet-8B-L3-MK.V-Blackroot
- openlynn/Llama-3-Soliloquy-8B-v2
- NousResearch/Meta-Llama-3-8B-Instruct
- turboderp/llama3-turbcat-instruct-8b
- VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct
- TIGER-Lab/MAmmoTH2-8B-Plus
- jondurbin/bagel-8b-v1.0
- abacusai/Llama-3-Smaug-8B
- failspy/Meta-Llama-3-8B-Instruct-abliterated-v3
- AwanLLM/Awanllm-Llama-3-8B-Cumulus-v1.0
- lodrick-the-lafted/Limon-8B
- vicgalle/Configurable-Llama-3-8B-v0.3
- Undi95/Llama3-Unholy-8B-OAS
- Undi95/Unholy-8B-DPO-OAS
L3-Scrambled-Eggs-On-Toast-8B
L3-Scrambled-Eggs-On-Toast-8B is a role-play model merger using 18 models that was made in 11 merging steps.
The goal is to create both a creative and smart model by using gradients. Each model has their own section in the gradient where they have a larger weight to promote intelligence whereas the rest of the models in the section of the gradient have a small weight to promote creativity.
The following models were used as inspiration:
- grimjim/kunoichi-lemon-royale-v3-32K-7B
- invisietch/EtherealRainbow-v0.3-8B
- PJMixers/LLaMa-3-CursedStock-v2.0-8B
Instruct Format
Llama 3
Settings/Presets
Instruct/Context
Virt-io's SillyTavern Presets is recommended.
Sampler Settings
Here are the current recommended settings for more creativity
Top K: 60
Min P: 0.035
Rep Pen: 1.05
Rep Pen Range: 2048
Pres Pen: 0.15
Smoothing Factor: 0.25
Dyna Temp:
Min Temp: 0.75
Max Temp: 1.5
Expo: 0.85
if you want more adherence, then the Naive preset is recommended
Quants
Weighted Quants by:
Static Quants by:
Secret Sauce
Models Used
L3-Scrambled-Eggs-On-Toast-8B is a merge of the following models using LazyMergekit:
- Sao10K/L3-8B-Stheno-v3.2
- ChaoticNeutrals/Poppy_Porpoise-1.0-L3-8B
- Nitral-AI/Hathor_Stable-v0.2-L3-8B
- NeverSleep/Llama-3-Lumimaid-8B-v0.1-OAS
- Hastagaras/Jamet-8B-L3-MK.V-Blackroot
- openlynn/Llama-3-Soliloquy-8B-v2
- NousResearch/Meta-Llama-3-8B-Instruct
- turboderp/llama3-turbcat-instruct-8b
- VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct
- TIGER-Lab/MAmmoTH2-8B-Plus
- jondurbin/bagel-8b-v1.0
- abacusai/Llama-3-Smaug-8B
- failspy/Meta-Llama-3-8B-Instruct-abliterated-v3
- AwanLLM/Awanllm-Llama-3-8B-Cumulus-v1.0
- lodrick-the-lafted/Limon-8B
- vicgalle/Configurable-Llama-3-8B-v0.3
- Undi95/Llama3-Unholy-8B-OAS
- Undi95/Unholy-8B-DPO-OAS
YAML Configs Used
The following YAML configs were used to make this mode
Eggs-and-Bread-RP-pt.1
models:
- model: Sao10K/L3-8B-Stheno-v3.2
- model: ChaoticNeutrals/Poppy_Porpoise-1.0-L3-8B
parameters:
density: 0.5
weight: [0.33, 0.0825, 0.0825, 0.0825, 0.0825]
- model: Nitral-AI/Hathor_Stable-v0.2-L3-8B
parameters:
density: 0.5
weight: [0.0825, 0.33, 0.0825, 0.0825, 0.0825]
- model: NeverSleep/Llama-3-Lumimaid-8B-v0.1-OAS
parameters:
density: 0.5
weight: [0.0825, 0.0825, 0.33, 0.0825, 0.0825]
- model: Hastagaras/Jamet-8B-L3-MK.V-Blackroot
parameters:
density: 0.5
weight: [0.0825, 0.0825, 0.0825, 0.33, 0.0825]
- model: openlynn/Llama-3-Soliloquy-8B-v2
parameters:
density: 0.5
weight: [0.0825, 0.0825, 0.0825, 0.0825, 0.33]
merge_method: dare_ties
base_model: Sao10K/L3-8B-Stheno-v3.2
parameters:
normalize: false
int8_mask: true
dtype: bfloat16
Eggs-and-Bread-RP-pt.2
models:
- model: Sao10K/L3-8B-Stheno-v3.2
- model: ChaoticNeutrals/Poppy_Porpoise-1.0-L3-8B
parameters:
gamma: 0.01
density: 0.9
weight: [0.0825, 0.0825, 0.0825, 0.0825, 0.33]
- model: Nitral-AI/Hathor_Stable-v0.2-L3-8B
parameters:
gamma: 0.01
density: 0.9
weight: [0.0825, 0.0825, 0.0825, 0.33, 0.0825]
- model: NeverSleep/Llama-3-Lumimaid-8B-v0.1-OAS
parameters:
gamma: 0.01
density: 0.9
weight: [0.0825, 0.0825, 0.33, 0.0825, 0.0825]
- model: Hastagaras/Jamet-8B-L3-MK.V-Blackroot
parameters:
gamma: 0.01
density: 0.9
weight: [0.0825, 0.33, 0.0825, 0.0825, 0.0825]
- model: openlynn/Llama-3-Soliloquy-8B-v2
parameters:
gamma: 0.01
density: 0.9
weight: [0.33, 0.0825, 0.0825, 0.0825, 0.0825]
merge_method: breadcrumbs_ties
base_model: Sao10K/L3-8B-Stheno-v3.2
parameters:
normalize: false
int8_mask: true
dtype: bfloat16
Egg-and-Bread-RP
models:
- model: Casual-Autopsy/Eggs-and-Bread-RP-pt.1
- model: Casual-Autopsy/Eggs-and-Bread-RP-pt.2
merge_method: slerp
base_model: Casual-Autopsy/Eggs-and-Bread-RP-pt.1
parameters:
t:
- filter: self_attn
value: [0.5, 0.3, 0.7, 0.5, 0.7, 0.3, 0.5, 0.3, 0.7, 0.5, 0.7, 0.3, 0.5]
- filter: mlp
value: [0.5, 0.7, 0.3, 0.5, 0.3, 0.7, 0.5, 0.7, 0.3, 0.5, 0.3, 0.7, 0.5]
- value: 0.5
dtype: bfloat16
Eggs-and-Bread-IQ-pt.1
models:
- model: NousResearch/Meta-Llama-3-8B-Instruct
- model: turboderp/llama3-turbcat-instruct-8b
parameters:
density: 0.5
weight: [0.33, 0.0825, 0.0825, 0.0825, 0.0825]
- model: VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct
parameters:
density: 0.5
weight: [0.0825, 0.33, 0.0825, 0.0825, 0.0825]
- model: TIGER-Lab/MAmmoTH2-8B-Plus
parameters:
density: 0.5
weight: [0.0825, 0.0825, 0.33, 0.0825, 0.0825]
- model: jondurbin/bagel-8b-v1.0
parameters:
density: 0.5
weight: [0.0825, 0.0825, 0.0825, 0.33, 0.0825]
- model: abacusai/Llama-3-Smaug-8B
parameters:
density: 0.5
weight: [0.0825, 0.0825, 0.0825, 0.0825, 0.33]
merge_method: dare_ties
base_model: NousResearch/Meta-Llama-3-8B-Instruct
parameters:
normalize: false
int8_mask: true
dtype: bfloat16
Eggs-and-Bread-IQ-pt.2
models:
- model: NousResearch/Meta-Llama-3-8B-Instruct
- model: turboderp/llama3-turbcat-instruct-8b
parameters:
gamma: 0.01
density: 0.9
weight: [0.0825, 0.0825, 0.0825, 0.0825, 0.33]
- model: VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct
parameters:
gamma: 0.01
density: 0.9
weight: [0.0825, 0.0825, 0.0825, 0.33, 0.0825]
- model: TIGER-Lab/MAmmoTH2-8B-Plus
parameters:
gamma: 0.01
density: 0.9
weight: [0.0825, 0.0825, 0.33, 0.0825, 0.0825]
- model: jondurbin/bagel-8b-v1.0
parameters:
gamma: 0.01
density: 0.9
weight: [0.0825, 0.33, 0.0825, 0.0825, 0.0825]
- model: abacusai/Llama-3-Smaug-8B
parameters:
gamma: 0.01
density: 0.9
weight: [0.33, 0.0825, 0.0825, 0.0825, 0.0825]
merge_method: breadcrumbs_ties
base_model: NousResearch/Meta-Llama-3-8B-Instruct
parameters:
normalize: false
int8_mask: true
dtype: bfloat16
Eggs-and-Bread-IQ
models:
- model: Casual-Autopsy/Eggs-and-Bread-IQ-pt.1
- model: Casual-Autopsy/Eggs-and-Bread-IQ-pt.2
merge_method: slerp
base_model: Casual-Autopsy/Eggs-and-Bread-IQ-pt.1
parameters:
t:
- filter: self_attn
value: [0.5, 0.3, 0.7, 0.5, 0.7, 0.3, 0.5, 0.3, 0.7, 0.5, 0.7, 0.3, 0.5]
- filter: mlp
value: [0.5, 0.7, 0.3, 0.5, 0.3, 0.7, 0.5, 0.7, 0.3, 0.5, 0.3, 0.7, 0.5]
- value: 0.5
dtype: bfloat16
Eggs-and-Bread-Uncen-pt.1
models:
- model: failspy/Meta-Llama-3-8B-Instruct-abliterated-v3
- model: AwanLLM/Awanllm-Llama-3-8B-Cumulus-v1.0
parameters:
density: 0.5
weight: [0.33, 0.0825, 0.0825, 0.0825, 0.0825]
- model: lodrick-the-lafted/Limon-8B
parameters:
density: 0.5
weight: [0.0825, 0.33, 0.0825, 0.0825, 0.0825]
- model: vicgalle/Configurable-Llama-3-8B-v0.3
parameters:
density: 0.5
weight: [0.0825, 0.0825, 0.33, 0.0825, 0.0825]
- model: Undi95/Llama3-Unholy-8B-OAS
parameters:
density: 0.5
weight: [0.0825, 0.0825, 0.0825, 0.33, 0.0825]
- model: Undi95/Unholy-8B-DPO-OAS
parameters:
density: 0.5
weight: [0.0825, 0.0825, 0.0825, 0.0825, 0.33]
merge_method: dare_ties
base_model: failspy/Meta-Llama-3-8B-Instruct-abliterated-v3
parameters:
normalize: false
int8_mask: true
dtype: bfloat16
Eggs-and-Bread-Uncen-pt.2
models:
- model: failspy/Meta-Llama-3-8B-Instruct-abliterated-v3
- model: AwanLLM/Awanllm-Llama-3-8B-Cumulus-v1.0
parameters:
gamma: 0.01
density: 0.9
weight: [0.0825, 0.0825, 0.0825, 0.0825, 0.33]
- model: lodrick-the-lafted/Limon-8B
parameters:
gamma: 0.01
density: 0.9
weight: [0.0825, 0.0825, 0.0825, 0.33, 0.0825]
- model: vicgalle/Configurable-Llama-3-8B-v0.3
parameters:
gamma: 0.01
density: 0.9
weight: [0.0825, 0.0825, 0.33, 0.0825, 0.0825]
- model: Undi95/Llama3-Unholy-8B-OAS
parameters:
gamma: 0.01
density: 0.9
weight: [0.0825, 0.33, 0.0825, 0.0825, 0.0825]
- model: Undi95/Unholy-8B-DPO-OAS
parameters:
gamma: 0.01
density: 0.9
weight: [0.33, 0.0825, 0.0825, 0.0825, 0.0825]
merge_method: breadcrumbs_ties
base_model: failspy/Meta-Llama-3-8B-Instruct-abliterated-v3
parameters:
normalize: false
int8_mask: true
dtype: bfloat16
Eggs-and-Bread-Uncen
models:
- model: Casual-Autopsy/Eggs-and-Bread-Uncen-pt.1
- model: Casual-Autopsy/Eggs-and-Bread-Uncen-pt.2
merge_method: slerp
base_model: Casual-Autopsy/Eggs-and-Bread-Uncen-pt.1
parameters:
t:
- filter: self_attn
value: [0.5, 0.3, 0.7, 0.5, 0.7, 0.3, 0.5, 0.3, 0.7, 0.5, 0.7, 0.3, 0.5]
- filter: mlp
value: [0.5, 0.7, 0.3, 0.5, 0.3, 0.7, 0.5, 0.7, 0.3, 0.5, 0.3, 0.7, 0.5]
- value: 0.5
dtype: bfloat16
Scrambled-Eggs-On-Toast-1
models:
- model: Casual-Autopsy/Eggs-and-Bread-RP
- model: Casual-Autopsy/Eggs-and-Bread-Uncen
merge_method: slerp
base_model: Casual-Autopsy/Eggs-and-Bread-RP
parameters:
t:
- value: [0.1, 0.15, 0.2, 0.4, 0.6, 0.4, 0.2, 0.15, 0.1]
dtype: bfloat16
L3-Scrambled-Eggs-On-Toast-8B
models:
- model: Casual-Autopsy/Scrambled-Eggs-On-Toast-1
- model: Casual-Autopsy/Eggs-and-Bread-IQ
merge_method: slerp
base_model: Casual-Autopsy/Scrambled-Eggs-On-Toast-1
parameters:
t:
- value: [0.7, 0.5, 0.3, 0.25, 0.2, 0.25, 0.3, 0.5, 0.7]
dtype: bfloat16