Edit model card

bert-base-cased_LeNER-Br

This model is a fine-tuned version of bert-base-cased on the lener_br dataset. It achieves the following results on the evaluation set:

  • Loss: nan
  • Precision: 0.6604
  • Recall: 0.7771
  • F1: 0.7140
  • Accuracy: 0.9648

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.2605 1.0 979 nan 0.5248 0.6918 0.5969 0.9538
0.0541 2.0 1958 nan 0.5968 0.7193 0.6524 0.9574
0.0327 3.0 2937 nan 0.5566 0.7413 0.6358 0.9584
0.0216 4.0 3916 nan 0.6642 0.7534 0.7060 0.9624
0.0175 5.0 4895 nan 0.6391 0.7711 0.6989 0.9659
0.0095 6.0 5874 nan 0.6099 0.7744 0.6823 0.9585
0.0099 7.0 6853 nan 0.6474 0.7942 0.7133 0.9642
0.0056 8.0 7832 nan 0.6606 0.7925 0.7205 0.9655
0.0038 9.0 8811 nan 0.6547 0.7859 0.7144 0.9660
0.0035 10.0 9790 nan 0.6604 0.7771 0.7140 0.9648

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1

Testing results

metrics={'test_loss': 0.11072904616594315, 'test_precision': 0.7897691827822833, 'test_recall': 0.8423153692614771, 'test_f1': 0.8151963940759821, 'test_accuracy': 0.9825182903350019, 'test_runtime': 18.686, 'test_samples_per_second': 74.387, 'test_steps_per_second': 9.312})

Downloads last month
13
Safetensors
Model size
108M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for CassioBN/bert-base-cased_LeNER-Br

Finetuned
(1944)
this model

Dataset used to train CassioBN/bert-base-cased_LeNER-Br

Evaluation results