Model
Model Page: Gemma
- fine-tuned the google/gemma-2b-it model.
How to Use it
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("carrotter/ko-gemma-2b-it-sft")
model = AutoModelForCausalLM.from_pretrained("carrotter/ko-gemma-2b-it-sft")
chat = [
{ "role": "user", "content": "ํผ๋ณด๋์น ์์ด ํ์ด์ฌ ์ฝ๋๋ก ์๋ ค์ค" },
]
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=100)
print(tokenizer.decode(outputs[0]))
Example Output
<bos><start_of_turn>user
ํผ๋ณด๋์น ์์ด ํ์ด์ฌ ์ฝ๋๋ก ์๋ ค์ค<end_of_turn>
<start_of_turn>model
๋ค์์ ํผ๋ณด๋์น ์์ด์ ํ์ด์ฌ์ผ๋ก ๊ตฌํํ๋ ๋ฐฉ๋ฒ์ ์์
๋๋ค:
def fibonacci(n):
if n <= 1:
return n
else:
return fibonacci(n-1) + fibonacci(n-2)
์ด ํจ์๋ n์ด ํผ๋ณด๋์น ์์ด์ ๋ช ๋ฒ์งธ ํญ์ธ์ง์ ๋ฐ๋ผ ๋ฐํํฉ๋๋ค. n์ด 1์ด๊ฑฐ๋ 2์ธ ๊ฒฝ์ฐ
Applications
This fine-tuned model is particularly suited for [mention applications, e.g., chatbots, question-answering systems, etc.]. Its enhanced capabilities ensure more accurate and contextually appropriate responses in these domains.
Limitations and Considerations
While our fine-tuning process has optimized the model for specific tasks, it's important to acknowledge potential limitations. The model's performance can still vary based on the complexity of the task and the specificities of the input data. Users are encouraged to evaluate the model thoroughly in their specific context to ensure it meets their requirements.
- Downloads last month
- 500
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.