Text Generation
GGUF
code
imatrix
conversational
File size: 14,767 Bytes
d5aa82b
 
a5f937a
d5aa82b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5f937a
 
d1f6790
 
d5aa82b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
---
license: apache-2.0
pipeline_tag: text-generation
tags:
- code
language:
- code
base_model: 01-ai/Yi-Coder-9B-Chat
model_creator: 01.AI
model_name: Yi-Coder-9B-Chat
model_type: llama
datasets:
- m-a-p/CodeFeedback-Filtered-Instruction
quantized_by: CISC
---

# Yi-Coder-9B-Chat - SOTA GGUF
- Model creator: [01.AI](https://huggingface.co/01-ai)
- Original model: [Yi-Coder-9B-Chat](https://huggingface.co/01-ai/Yi-Coder-9B-Chat)

<!-- description start -->
## Description

This repo contains State Of The Art quantized GGUF format model files for [Yi-Coder-9B-Chat](https://huggingface.co/01-ai/Yi-Coder-9B-Chat).

Quantization was done with an importance matrix that was trained for ~1M tokens (256 batches of 4096 tokens) of answers from the [CodeFeedback-Filtered-Instruction](https://huggingface.co/datasets/m-a-p/CodeFeedback-Filtered-Instruction) dataset.

**Update September 19th**: Requantized with new imatrix after finding a [bug](https://github.com/ggerganov/llama.cpp/pull/9543) in `llama-imatrix` that degraded the data set. Also removed the Fill-in-Middle tokens as they are [not properly supported](https://huggingface.co/01-ai/Yi-Coder-9B-Chat/discussions/5).

**Update September 5th**: Marked <|im_start|> as a special token, fixing tokenization.

Corrected EOS (<|im_end|>) and added EOT (<|endoftext|>) token to prevent infinite responses (am I the only one actually dog-fooding my own quants?).

<!-- description end -->


<!-- prompt-template start -->
## Prompt template: ChatML

```
<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```

<!-- prompt-template end -->


<!-- compatibility_gguf start -->
## Compatibility

These quantised GGUFv3 files are compatible with llama.cpp from February 27th 2024 onwards, as of commit [0becb22](https://github.com/ggerganov/llama.cpp/commit/0becb22ac05b6542bd9d5f2235691aa1d3d4d307)

They are also compatible with many third party UIs and libraries provided they are built using a recent llama.cpp.

## Explanation of quantisation methods

<details>
  <summary>Click to see details</summary>

The new methods available are:

* GGML_TYPE_IQ1_S - 1-bit quantization in super-blocks with an importance matrix applied, effectively using 1.56 bits per weight (bpw)
* GGML_TYPE_IQ1_M - 1-bit quantization in super-blocks with an importance matrix applied, effectively using 1.75 bpw
* GGML_TYPE_IQ2_XXS - 2-bit quantization in super-blocks with an importance matrix applied, effectively using 2.06 bpw
* GGML_TYPE_IQ2_XS - 2-bit quantization in super-blocks with an importance matrix applied, effectively using 2.31 bpw
* GGML_TYPE_IQ2_S - 2-bit quantization in super-blocks with an importance matrix applied, effectively using 2.5 bpw
* GGML_TYPE_IQ2_M - 2-bit quantization in super-blocks with an importance matrix applied, effectively using 2.7 bpw
* GGML_TYPE_IQ3_XXS - 3-bit quantization in super-blocks with an importance matrix applied, effectively using 3.06 bpw
* GGML_TYPE_IQ3_XS - 3-bit quantization in super-blocks with an importance matrix applied, effectively using 3.3 bpw
* GGML_TYPE_IQ3_S - 3-bit quantization in super-blocks with an importance matrix applied, effectively using 3.44 bpw
* GGML_TYPE_IQ3_M - 3-bit quantization in super-blocks with an importance matrix applied, effectively using 3.66 bpw
* GGML_TYPE_IQ4_XS - 4-bit quantization in super-blocks with an importance matrix applied, effectively using 4.25 bpw
* GGML_TYPE_IQ4_NL - 4-bit non-linearly mapped quantization with an importance matrix applied, effectively using 4.5 bpw

Refer to the Provided Files table below to see what files use which methods, and how.
</details>
<!-- compatibility_gguf end -->

<!-- README_GGUF.md-provided-files start -->
## Provided files

| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| [Yi-Coder-9B-Chat.IQ1_S.gguf](https://huggingface.co/CISCai/Yi-Coder-9B-Chat-SOTA-GGUF/blob/main/Yi-Coder-9B-Chat.IQ1_S.gguf) | IQ1_S | 1 | 1.9 GB| 2.2 GB | smallest, significant quality loss |
| [Yi-Coder-9B-Chat.IQ1_M.gguf](https://huggingface.co/CISCai/Yi-Coder-9B-Chat-SOTA-GGUF/blob/main/Yi-Coder-9B-Chat.IQ1_M.gguf) | IQ1_M | 1 | 2.0 GB| 2.3 GB | very small, significant quality loss |
| [Yi-Coder-9B-Chat.IQ2_XXS.gguf](https://huggingface.co/CISCai/Yi-Coder-9B-Chat-SOTA-GGUF/blob/main/Yi-Coder-9B-Chat.IQ2_XXS.gguf) | IQ2_XXS | 2 | 2.3 GB| 2.6 GB | very small, high quality loss |
| [Yi-Coder-9B-Chat.IQ2_XS.gguf](https://huggingface.co/CISCai/Yi-Coder-9B-Chat-SOTA-GGUF/blob/main/Yi-Coder-9B-Chat.IQ2_XS.gguf) | IQ2_XS | 2 | 2.5 GB| 2.8 GB | very small, high quality loss |
| [Yi-Coder-9B-Chat.IQ2_S.gguf](https://huggingface.co/CISCai/Yi-Coder-9B-Chat-SOTA-GGUF/blob/main/Yi-Coder-9B-Chat.IQ2_S.gguf) | IQ2_S | 2 | 2.7 GB| 2.9 GB | small, substantial quality loss |
| [Yi-Coder-9B-Chat.IQ2_M.gguf](https://huggingface.co/CISCai/Yi-Coder-9B-Chat-SOTA-GGUF/blob/main/Yi-Coder-9B-Chat.IQ2_M.gguf) | IQ2_M | 2 | 2.9 GB| 3.1 GB | small, greater quality loss |
| [Yi-Coder-9B-Chat.IQ3_XXS.gguf](https://huggingface.co/CISCai/Yi-Coder-9B-Chat-SOTA-GGUF/blob/main/Yi-Coder-9B-Chat.IQ3_XXS.gguf) | IQ3_XXS | 3 | 3.2 GB| 3.5 GB | very small, high quality loss |
| [Yi-Coder-9B-Chat.IQ3_XS.gguf](https://huggingface.co/CISCai/Yi-Coder-9B-Chat-SOTA-GGUF/blob/main/Yi-Coder-9B-Chat.IQ3_XS.gguf) | IQ3_XS | 3 | 3.5 GB| 3.8 GB | small, substantial quality loss |
| [Yi-Coder-9B-Chat.IQ3_S.gguf](https://huggingface.co/CISCai/Yi-Coder-9B-Chat-SOTA-GGUF/blob/main/Yi-Coder-9B-Chat.IQ3_S.gguf) | IQ3_S | 3 | 3.6 GB| 3.9 GB | small, greater quality loss |
| [Yi-Coder-9B-Chat.IQ3_M.gguf](https://huggingface.co/CISCai/Yi-Coder-9B-Chat-SOTA-GGUF/blob/main/Yi-Coder-9B-Chat.IQ3_M.gguf) | IQ3_M | 3 | 3.8 GB| 4.1 GB | medium, balanced quality - recommended |
| [Yi-Coder-9B-Chat.IQ4_XS.gguf](https://huggingface.co/CISCai/Yi-Coder-9B-Chat-SOTA-GGUF/blob/main/Yi-Coder-9B-Chat.IQ4_XS.gguf) | IQ4_XS | 4 | 4.5 GB| 4.7 GB | small, substantial quality loss |

Generated importance matrix file: [Yi-Coder-9B-Chat.imatrix.dat](https://huggingface.co/CISCai/Yi-Coder-9B-Chat-SOTA-GGUF/blob/main/Yi-Coder-9B-Chat.imatrix.dat)

**Note**: the above RAM figures assume no GPU offloading with 4K context. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.

<!-- README_GGUF.md-provided-files end -->

<!-- README_GGUF.md-how-to-run start -->
## Example `llama.cpp` command

Make sure you are using `llama.cpp` from commit [0becb22](https://github.com/ggerganov/llama.cpp/commit/0becb22ac05b6542bd9d5f2235691aa1d3d4d307) or later.

```shell
./llama-cli -ngl 49 -m Yi-Coder-9B-Chat.IQ4_XS.gguf --color -c 131072 --temp 0 --repeat-penalty 1.1 -p "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
```

Change `-ngl 49` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.

Change `-c 131072` to the desired sequence length.

If you are low on V/RAM try quantizing the K-cache with `-ctk q8_0` or even `-ctk q4_0` for big memory savings (depending on context size).
There is a similar option for V-cache (`-ctv`), only available if you enable Flash Attention (`-fa`) as well.

For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)

## How to run from Python code

You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) module.

### How to load this model in Python code, using llama-cpp-python

For full documentation, please see: [llama-cpp-python docs](https://llama-cpp-python.readthedocs.io/en/latest/).

#### First install the package

Run one of the following commands, according to your system:

```shell
# Prebuilt wheel with basic CPU support
pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cpu
# Prebuilt wheel with NVidia CUDA acceleration
pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cu121 (or cu122 etc.)
# Prebuilt wheel with Metal GPU acceleration
pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/metal
# Build base version with no GPU acceleration
pip install llama-cpp-python
# With NVidia CUDA acceleration
CMAKE_ARGS="-DGGML_CUDA=on" pip install llama-cpp-python
# Or with OpenBLAS acceleration
CMAKE_ARGS="-DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
# Or with AMD ROCm GPU acceleration (Linux only)
CMAKE_ARGS="-DGGML_HIPBLAS=on" pip install llama-cpp-python
# Or with Metal GPU acceleration for macOS systems only
CMAKE_ARGS="-DGGML_METAL=on" pip install llama-cpp-python
# Or with Vulkan acceleration
CMAKE_ARGS="-DGGML_VULKAN=on" pip install llama-cpp-python
# Or with SYCL acceleration
CMAKE_ARGS="-DGGML_SYCL=on -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx" pip install llama-cpp-python

# In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
$env:CMAKE_ARGS = "-DGGML_CUDA=on"
pip install llama-cpp-python
```

#### Simple llama-cpp-python example code

```python
from llama_cpp import Llama

# Chat Completion API

llm = Llama(model_path="./Yi-Coder-9B-Chat.IQ4_XS.gguf", n_gpu_layers=49, n_ctx=131072)
print(llm.create_chat_completion(
    repeat_penalty = 1.1,
    messages = [
        {
            "role": "user",
            "content": "Pick a LeetCode challenge and solve it in Python."
        }
    ]
))
```

<!-- README_GGUF.md-how-to-run end -->

<!-- original-model-card start -->
<div align="center">

<picture> 
  <img src="https://raw.githubusercontent.com/01-ai/Yi/main/assets/img/Yi_logo_icon_light.svg" width="120px">
</picture>

</div>

<p align="center">
  <a href="https://github.com/01-ai">🐙 GitHub</a>
  <a href="https://discord.gg/hYUwWddeAu">👾 Discord</a>
  <a href="https://twitter.com/01ai_yi">🐤 Twitter</a>
  <a href="https://github.com/01-ai/Yi-1.5/issues/2">💬 WeChat</a> 
  <br/>
  <a href="https://arxiv.org/abs/2403.04652">📝 Paper</a>
  <a href="https://01-ai.github.io/">💪 Tech Blog</a>
  <a href="https://github.com/01-ai/Yi/tree/main?tab=readme-ov-file#faq">🙌 FAQ</a>
  <a href="https://github.com/01-ai/Yi/tree/main?tab=readme-ov-file#learning-hub">📗 Learning Hub</a>
</p>

# Intro

Yi-Coder is a series of open-source code language models that delivers state-of-the-art coding performance with fewer than 10 billion parameters. 

Key features:
- Excelling in long-context understanding with a maximum context length of 128K tokens.
- Supporting 52 major programming languages:
```bash
  'java', 'markdown', 'python', 'php', 'javascript', 'c++', 'c#', 'c', 'typescript', 'html', 'go', 'java_server_pages', 'dart', 'objective-c', 'kotlin', 'tex', 'swift', 'ruby', 'sql', 'rust', 'css', 'yaml', 'matlab', 'lua', 'json', 'shell', 'visual_basic', 'scala', 'rmarkdown', 'pascal', 'fortran', 'haskell', 'assembly', 'perl', 'julia', 'cmake', 'groovy', 'ocaml', 'powershell', 'elixir', 'clojure', 'makefile', 'coffeescript', 'erlang', 'lisp', 'toml', 'batchfile', 'cobol', 'dockerfile', 'r', 'prolog', 'verilog'
  ```

For model details and benchmarks, see [Yi-Coder blog](https://01-ai.github.io/) and [Yi-Coder README](https://github.com/01-ai/Yi-Coder).

<p align="left"> 
  <img src="https://github.com/01-ai/Yi/blob/main/assets/img/coder/yi-coder-calculator-demo.gif?raw=true" alt="demo1" width="500"/> 
</p>

# Models

| Name               | Type |  Length | Download                                                                                                                                          |
|--------------------|------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Yi-Coder-9B-Chat   | Chat |      128K      | [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-Coder-9B-Chat) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-Coder-9B-Chat) • [🟣 wisemodel](https://wisemodel.cn/models/01.AI/Yi-Coder-9B-Chat) |
| Yi-Coder-1.5B-Chat | Chat |      128K      | [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-Coder-1.5B-Chat) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-Coder-1.5B-Chat) • [🟣 wisemodel](https://wisemodel.cn/models/01.AI/Yi-Coder-1.5B-Chat) |
| Yi-Coder-9B        | Base |      128K      | [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-Coder-9B) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-Coder-9B) • [🟣 wisemodel](https://wisemodel.cn/models/01.AI/Yi-Coder-9B) |
| Yi-Coder-1.5B      | Base |      128K      | [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-Coder-1.5B) • [🤖 ModelScope](https://www.modelscope.cn/models/01ai/Yi-Coder-1.5B) • [🟣 wisemodel](https://wisemodel.cn/models/01.AI/Yi-Coder-1.5B) |
|                    | 

# Benchmarks

As illustrated in the figure below, Yi-Coder-9B-Chat achieved an impressive 23% pass rate in LiveCodeBench, making it the only model with under 10B parameters to surpass 20%. It also outperforms DeepSeekCoder-33B-Ins at 22.3%, CodeGeex4-9B-all at 17.8%, CodeLLama-34B-Ins at 13.3%, and CodeQwen1.5-7B-Chat at 12%.

<p align="left"> 
  <img src="https://github.com/01-ai/Yi/blob/main/assets/img/coder/bench1.webp?raw=true" alt="bench1" width="1000"/> 
</p>

# Quick Start

You can use transformers to run inference with Yi-Coder models (both chat and base versions) as follows:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM

device = "cuda" # the device to load the model onto
model_path = "01-ai/Yi-Coder-9B-Chat"

tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto").eval()

prompt = "Write a quick sort algorithm."
messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)

generated_ids = model.generate(
    model_inputs.input_ids,
    max_new_tokens=1024,
    eos_token_id=tokenizer.eos_token_id  
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```

For getting up and running with Yi-Coder series models quickly, see [Yi-Coder README](https://github.com/01-ai/Yi-Coder).