File size: 13,047 Bytes
db006cf
d78cfeb
 
 
 
 
 
db006cf
d78cfeb
 
 
 
 
 
db006cf
d78cfeb
 
 
 
 
 
 
 
 
 
9848e27
d78cfeb
9848e27
d78cfeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd8e76d
d78cfeb
 
 
 
 
 
 
 
 
 
 
9848e27
d78cfeb
 
 
 
 
 
 
 
4c1ab44
9848e27
d78cfeb
 
 
 
 
 
 
 
 
 
9848e27
d78cfeb
 
 
 
 
 
 
 
4c1ab44
d78cfeb
 
dd8e76d
d78cfeb
 
 
 
 
 
 
4c1ab44
d78cfeb
 
 
 
 
 
 
 
 
 
 
dd8e76d
 
 
d78cfeb
 
2ab92e1
 
e0cb7a6
2ab92e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0cb7a6
2ab92e1
e0cb7a6
 
2ab92e1
e0cb7a6
 
2ab92e1
e0cb7a6
2ab92e1
 
 
d78cfeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
---
base_model: m-a-p/OpenCodeInterpreter-DS-6.7B
language:
- en
pipeline_tag: text-generation
tags:
- code
license: apache-2.0
model_creator: Multimodal Art Projection (M-A-P)
model_name: OpenCodeInterpreter DS 6.7B
model_type: deepseek
datasets:
- m-a-p/CodeFeedback-Filtered-Instruction
quantized_by: CISC
---

# OpenCodeInterpreter DS 6.7B - SOTA GGUF
- Model creator: [Multimodal Art Projection](https://huggingface.co/m-a-p)
- Original model: [OpenCodeInterpreter DS 6.7B](https://huggingface.co/m-a-p/OpenCodeInterpreter-DS-6.7B)

<!-- description start -->
## Description

This repo contains State Of The Art quantized GGUF format model files for [OpenCodeInterpreter DS 6.7B](https://huggingface.co/m-a-p/OpenCodeInterpreter-DS-6.7B).

Quantization was done with an importance matrix that was trained for ~1M tokens (256 batches of 4096 tokens) of answers from the [CodeFeedback-Filtered-Instruction](https://huggingface.co/datasets/m-a-p/CodeFeedback-Filtered-Instruction) dataset.

Everything has been reconverted and quantized with a new importance matrix using llama.cpp from April 29th 2024 onwards, as of commit [f4ab2a4](https://github.com/ggerganov/llama.cpp/commit/f4ab2a41476600a98067a9474ea8f9e6db41bcfa) to ensure correct pre-tokenization. The new GGUFs will work with older llama.cpp, but this may not generate correct prompt tokens, please use a recent build to ensure the best possible results!

<!-- description end -->


<!-- prompt-template start -->
## Prompt template: DeepSeek

```
You are an AI programming assistant, utilizing the Deepseek Coder model, developed by Deepseek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer.
### Instruction:
{prompt}
### Response:

```

<!-- prompt-template end -->


<!-- compatibility_gguf start -->
## Compatibility

These quantised GGUFv3 files are compatible with llama.cpp from February 27th 2024 onwards, as of commit [0becb22](https://github.com/ggerganov/llama.cpp/commit/0becb22ac05b6542bd9d5f2235691aa1d3d4d307)

They are also compatible with many third party UIs and libraries provided they are built using a recent llama.cpp.

## Explanation of quantisation methods

<details>
  <summary>Click to see details</summary>

The new methods available are:

* GGML_TYPE_IQ1_S - 1-bit quantization in super-blocks with an importance matrix applied, effectively using 1.56 bits per weight (bpw)
* GGML_TYPE_IQ1_M - 1-bit quantization in super-blocks with an importance matrix applied, effectively using 1.75 bpw
* GGML_TYPE_IQ2_XXS - 2-bit quantization in super-blocks with an importance matrix applied, effectively using 2.06 bpw
* GGML_TYPE_IQ2_XS - 2-bit quantization in super-blocks with an importance matrix applied, effectively using 2.31 bpw
* GGML_TYPE_IQ2_S - 2-bit quantization in super-blocks with an importance matrix applied, effectively using 2.5 bpw
* GGML_TYPE_IQ2_M - 2-bit quantization in super-blocks with an importance matrix applied, effectively using 2.7 bpw
* GGML_TYPE_IQ3_XXS - 3-bit quantization in super-blocks with an importance matrix applied, effectively using 3.06 bpw
* GGML_TYPE_IQ3_XS - 3-bit quantization in super-blocks with an importance matrix applied, effectively using 3.3 bpw
* GGML_TYPE_IQ3_S - 3-bit quantization in super-blocks with an importance matrix applied, effectively using 3.44 bpw
* GGML_TYPE_IQ3_M - 3-bit quantization in super-blocks with an importance matrix applied, effectively using 3.66 bpw
* GGML_TYPE_IQ4_XS - 4-bit quantization in super-blocks with an importance matrix applied, effectively using 4.25 bpw
* GGML_TYPE_IQ4_NL - 4-bit non-linearly mapped quantization with an importance matrix applied, effectively using 4.5 bpw

Refer to the Provided Files table below to see what files use which methods, and how.
</details>
<!-- compatibility_gguf end -->

<!-- README_GGUF.md-provided-files start -->
## Provided files

| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| [OpenCodeInterpreter-DS-6.7B.IQ1_S.gguf](https://huggingface.co/CISCai/OpenCodeInterpreter-DS-6.7B-SOTA-GGUF/blob/main/OpenCodeInterpreter-DS-6.7B.IQ1_S.gguf) | IQ1_S | 1 | 1.5 GB| 3.5 GB | smallest, significant quality loss - **TBD**: Waiting for [this issue](https://github.com/ggerganov/llama.cpp/issues/5996) to be resolved |
| [OpenCodeInterpreter-DS-6.7B.IQ2_XXS.gguf](https://huggingface.co/CISCai/OpenCodeInterpreter-DS-6.7B-SOTA-GGUF/blob/main/OpenCodeInterpreter-DS-6.7B.IQ2_XXS.gguf) | IQ2_XXS | 2 | 1.8 GB| 3.8 GB | very small, high quality loss |
| [OpenCodeInterpreter-DS-6.7B.IQ2_XS.gguf](https://huggingface.co/CISCai/OpenCodeInterpreter-DS-6.7B-SOTA-GGUF/blob/main/OpenCodeInterpreter-DS-6.7B.IQ2_XS.gguf) | IQ2_XS | 2 | 1.9 GB| 3.9 GB | very small, high quality loss |
| [OpenCodeInterpreter-DS-6.7B.IQ2_S.gguf](https://huggingface.co/CISCai/OpenCodeInterpreter-DS-6.7B-SOTA-GGUF/blob/main/OpenCodeInterpreter-DS-6.7B.IQ2_S.gguf) | IQ2_S | 2 | 2.1 GB| 4.1 GB | small, substantial quality loss |
| [OpenCodeInterpreter-DS-6.7B.IQ2_M.gguf](https://huggingface.co/CISCai/OpenCodeInterpreter-DS-6.7B-SOTA-GGUF/blob/main/OpenCodeInterpreter-DS-6.7B.IQ2_M.gguf) | IQ2_M | 2 | 2.2 GB| 4.2 GB | small, greater quality loss |
| [OpenCodeInterpreter-DS-6.7B.IQ3_XXS.gguf](https://huggingface.co/CISCai/OpenCodeInterpreter-DS-6.7B-SOTA-GGUF/blob/main/OpenCodeInterpreter-DS-6.7B.IQ3_XXS.gguf) | IQ3_XXS | 3 | 2.5 GB| 4.5 GB | very small, high quality loss |
| [OpenCodeInterpreter-DS-6.7B.IQ3_XS.gguf](https://huggingface.co/CISCai/OpenCodeInterpreter-DS-6.7B-SOTA-GGUF/blob/main/OpenCodeInterpreter-DS-6.7B.IQ3_XS.gguf) | IQ3_XS | 3 | 2.7 GB| 4.7 GB | small, substantial quality loss |
| [OpenCodeInterpreter-DS-6.7B.IQ3_S.gguf](https://huggingface.co/CISCai/OpenCodeInterpreter-DS-6.7B-SOTA-GGUF/blob/main/OpenCodeInterpreter-DS-6.7B.IQ3_S.gguf) | IQ3_S | 3 | 2.8 GB| 4.8 GB | small, greater quality loss |
| [OpenCodeInterpreter-DS-6.7B.IQ3_M.gguf](https://huggingface.co/CISCai/OpenCodeInterpreter-DS-6.7B-SOTA-GGUF/blob/main/OpenCodeInterpreter-DS-6.7B.IQ3_M.gguf) | IQ3_M | 3 | 3.0 GB| 5.0 GB | medium, balanced quality - recommended |
| [OpenCodeInterpreter-DS-6.7B.IQ4_XS.gguf](https://huggingface.co/CISCai/OpenCodeInterpreter-DS-6.7B-SOTA-GGUF/blob/main/OpenCodeInterpreter-DS-6.7B.IQ4_XS.gguf) | IQ4_XS | 4 | 3.4 GB| 5.4 GB | small, substantial quality loss |

Generated importance matrix file: [OpenCodeInterpreter-DS-6.7B.imatrix.dat](https://huggingface.co/CISCai/OpenCodeInterpreter-DS-6.7B-SOTA-GGUF/blob/main/OpenCodeInterpreter-DS-6.7B.imatrix.dat)

**Note**: the above RAM figures assume no GPU offloading with 4K context. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.

<!-- README_GGUF.md-provided-files end -->

<!-- README_GGUF.md-how-to-run start -->
## Example `llama.cpp` command

Make sure you are using `llama.cpp` from commit [0becb22](https://github.com/ggerganov/llama.cpp/commit/0becb22ac05b6542bd9d5f2235691aa1d3d4d307) or later.

```shell
./main -ngl 33 -m OpenCodeInterpreter-DS-6.7B.IQ3_M.gguf --color -c 16384 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "You are an AI programming assistant, utilizing the Deepseek Coder model, developed by Deepseek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer.\n### Instruction:\n{prompt}\n### Response:"
```

Change `-ngl 33` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.

Change `-c 16384` to the desired sequence length.

If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`

If you are low on V/RAM try quantizing the K-cache with `-ctk q8_0` or even `-ctk q4_0` for big memory savings (depending on context size).
There is a similar option for V-cache (`-ctv`), however that is [not working yet](https://github.com/ggerganov/llama.cpp/issues/4425).

For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)

## How to run from Python code

You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) module.

### How to load this model in Python code, using llama-cpp-python

For full documentation, please see: [llama-cpp-python docs](https://llama-cpp-python.readthedocs.io/en/latest/).

#### First install the package

Run one of the following commands, according to your system:

```shell
# Prebuilt wheel with basic CPU support
pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cpu
# Prebuilt wheel with NVidia CUDA acceleration
pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cu121 (or cu122 etc.)
# Prebuilt wheel with Metal GPU acceleration
pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/metal
# Build base version with no GPU acceleration
pip install llama-cpp-python
# With NVidia CUDA acceleration
CMAKE_ARGS="-DLLAMA_CUDA=on" pip install llama-cpp-python
# Or with OpenBLAS acceleration
CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
# Or with CLBLast acceleration
CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
# Or with AMD ROCm GPU acceleration (Linux only)
CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
# Or with Metal GPU acceleration for macOS systems only
CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
# Or with Vulkan acceleration
CMAKE_ARGS="-DLLAMA_VULKAN=on" pip install llama-cpp-python
# Or with Kompute acceleration
CMAKE_ARGS="-DLLAMA_KOMPUTE=on" pip install llama-cpp-python
# Or with SYCL acceleration
CMAKE_ARGS="-DLLAMA_SYCL=on -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx" pip install llama-cpp-python

# In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
$env:CMAKE_ARGS = "-DLLAMA_CUDA=on"
pip install llama-cpp-python
```

#### Simple llama-cpp-python example code

```python
from llama_cpp import Llama

# Chat Completion API

llm = Llama(model_path="./OpenCodeInterpreter-DS-6.7B.IQ3_M.gguf", n_gpu_layers=33, n_ctx=16384)
print(llm.create_chat_completion(
    messages = [
        {"role": "system", "content": "You are an expert AI coding assistant."},
        {
            "role": "user",
            "content": "Pick a LeetCode challenge and solve it in Python."
        }
    ]
))
```

<!-- README_GGUF.md-how-to-run end -->

<!-- original-model-card start -->
# Original model card: Multimodal Art Projection's OpenCodeInterpreter DS 6.7B

<h1 align="center"> OpenCodeInterpreter: Integrating Code Generation with Execution and Refinement<h1>

<p align="center">
<img width="1000px" alt="OpenCodeInterpreter" src="https://opencodeinterpreter.github.io/static/images/figure1.png">
</p>
<p align="center">
  <a href="https://opencodeinterpreter.github.io/">[🏠Homepage]</a> 
  |
  <a href="https://github.com/OpenCodeInterpreter/OpenCodeInterpreter/">[🛠️Code]</a> 
</p>
<hr>

## Introduction
OpenCodeInterpreter is a family of open-source code generation systems designed to bridge the gap between large language models and advanced proprietary systems like the GPT-4 Code Interpreter. It significantly advances code generation capabilities by integrating execution and iterative refinement functionalities.

For further information and related work, refer to our paper: ["OpenCodeInterpreter: A System for Enhanced Code Generation and Execution"](https://arxiv.org/abs/2402.14658) available on arXiv.

## Model Information
This model is based on [deepseek-coder-6.7b-base](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base).

## Model Usage
### Inference

```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_path="m-a-p/OpenCodeInterpreter-DS-6.7B"

tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
    model_path,
    torch_dtype=torch.bfloat16,
    device_map="auto",
)
model.eval()

prompt = "Write a function to find the shared elements from the given two lists."
inputs = tokenizer.apply_chat_template(
        [{'role': 'user', 'content': prompt }],
        return_tensors="pt"
    ).to(model.device)
outputs = model.generate(
    inputs, 
    max_new_tokens=1024,
    do_sample=False,
    pad_token_id=tokenizer.eos_token_id,
    eos_token_id=tokenizer.eos_token_id,
)
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))
```


## Contact

If you have any inquiries, please feel free to raise an issue or reach out to us via email at: xiangyue.work@gmail.com, zhengtianyu0428@gmail.com. 
We're here to assist you!"

<!-- original-model-card end -->