Model Card for Model ID

在llama-2-13b上使用huangyt/FINETUNE5資料集進行訓練,總資料筆數約4w

Fine-Tuning Information

  • GPU: RTX4090 (single core / 24564MiB)
  • model: meta-llama/Llama-2-13b-hf
  • dataset: huangyt/FINETUNE3 (共約3.3w筆訓練集)
  • peft_type: LoRA
  • lora_rank: 16
  • lora_target: q_proj, k_proj, v_proj, o_proj
  • per_device_train_batch_size: 8
  • gradient_accumulation_steps: 8
  • learning_rate : 4e-4
  • epoch: 1
  • precision: bf16
  • quantization: load_in_4bit

Fine-Tuning Detail

  • train_loss: 0.579
  • train_runtime: 4:6:11 (use deepspeed)

Evaluation

  • 與Llama-2-13b比較4種Benchmark,包含ARCHellaSwagMMLUTruthfulQA
  • 評估結果使用本地所測的分數,並使用load_in_8bit
Model Average ARC HellaSwag MMLU TruthfulQA Time (s)
FINETUNE5_4w-r4-q_k_v_o 56.09 54.35 79.24 54.01 36.75 22095
FINETUNE5_4w-r8-q_k_v_o 57.55 55.38 79.57 54.03 41.21 22127
FINETUNE5_4w-r16-q_k_v_o 57.26 54.35 79.74 52.29 42.68 22153
FINETUNE5_4w-r4-gate_up_down 56.51 52.82 79.13 52.83 41.28 22899
FINETUNE5_4w-r8-gate_up_down 56.10 52.73 79.14 52.56 39.99 22926
FINETUNE5_4w-r16-gate_up_down 56.23 52.39 79.48 53.42 39.62 22963
FINETUNE5_4w-r4-q_k_v_o_gate_up_down 56.06 52.56 79.21 51.67 40.80 24303
FINETUNE5_4w-r8-q_k_v_o_gate_up_down 56.35 51.88 79.42 52.00 42.10 24376
FINETUNE5_4w-r16-q_k_v_o_gate_up_down 56.73 54.18 79.53 52.77 40.46 24439

How to convert dataset to json

  • load_dataset中輸入資料集名稱,並且在take中輸入要取前幾筆資料
  • 觀察該資料集的欄位名稱,填入example欄位中(例如system_prompt、question、response)
  • 最後指定json檔儲存位置 (json_filename)
import json
from datasets import load_dataset

# 讀取數據集,take可以取得該數據集前n筆資料
dataset = load_dataset("huangyt/FINETUNE5", split="train", streaming=True)

# 提取所需欄位並建立新的字典列表
extracted_data = []
for example in dataset:
    extracted_example = {
        "instruction": example["instruction"],
        "input": example["input"],
        "output": example["output"]
    }
    extracted_data.append(extracted_example)

# 指定 JSON 文件名稱
json_filename = "FINETUNE5.json"

# 寫入 JSON 文件
with open(json_filename, "w") as json_file:
    json.dump(extracted_data, json_file, indent=4)

print(f"數據已提取並保存為 {json_filename}")
Downloads last month
1,945
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for CHIH-HUNG/llama-2-13b-FINETUNE5_4w-r4-q_k_v_o

Quantizations
1 model

Dataset used to train CHIH-HUNG/llama-2-13b-FINETUNE5_4w-r4-q_k_v_o