Model Card for Model ID

在llama-2-13b上使用huangyt/FINETUNE1資料集進行訓練,總資料筆數約17w

Fine-Tuning Information

  • GPU: RTX4090 (single core / 24564MiB)
  • model: meta-llama/Llama-2-13b-hf
  • dataset: huangyt/FINETUNE1 (共約17w筆訓練集)
  • peft_type: LoRA
  • lora_rank: 16
  • lora_target: gate_proj, up_proj, down_proj
  • per_device_train_batch_size: 8
  • gradient_accumulation_steps: 8
  • learning_rate : 5e-5
  • epoch: 1
  • precision: bf16
  • quantization: load_in_4bit

Fine-Tuning Detail

  • train_loss: 0.66
  • train_runtime: 16:26:58 (use deepspeed)

Evaluation

  • 評估結果來自HuggingFaceH4/open_llm_leaderboard
  • 與Llama-2-13b比較4種Benchmark,包含ARCHellaSwagMMLUTruthfulQA
Model Average ARC HellaSwag MMLU TruthfulQA
meta-llama/Llama-2-13b-hf 56.9 58.11 80.97 54.34 34.17
meta-llama/Llama-2-13b-chat-hf 59.93 59.04 81.94 54.64 44.12
CHIH-HUNG/llama-2-13b-Fintune_1_17w 58.24 59.47 81 54.31 38.17
CHIH-HUNG/llama-2-13b-huangyt_Fintune_1_17w-q_k_v_o_proj 58.49 59.73 81.06 54.53 38.64
CHIH-HUNG/llama-2-13b-Fintune_1_17w-gate_up_down_proj 58.81 57.17 82.26 55.89 39.93
CHIH-HUNG/llama-2-13b-FINETUNE1_17w-r16 58.86 57.25 82.27 56.16 39.75
CHIH-HUNG/llama-2-13b-FINETUNE1_17w-r4 58.71 56.74 82.27 56.18 39.65

How to convert dataset to json

  • load_dataset中輸入資料集名稱,並且在take中輸入要取前幾筆資料
  • 觀察該資料集的欄位名稱,填入example欄位中(例如system_prompt、question、response)
  • 最後指定json檔儲存位置 (json_filename)
import json
from datasets import load_dataset

# 讀取數據集,take可以取得該數據集前n筆資料
dataset = load_dataset("huangyt/FINETUNE1", split="train", streaming=True)

# 提取所需欄位並建立新的字典列表
extracted_data = []
for example in dataset:
    extracted_example = {
        "instruction": example["instruction"],
        "input": example["input"],
        "output": example["output"]
    }
    extracted_data.append(extracted_example)

# 指定 JSON 文件名稱
json_filename = "huangyt_FINETUNE_1.json"

# 寫入 JSON 文件
with open(json_filename, "w") as json_file:
    json.dump(extracted_data, json_file, indent=4)

print(f"數據已提取並保存為 {json_filename}")
Downloads last month
1,046
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Dataset used to train CHIH-HUNG/llama-2-13b-FINETUNE1_17w-r16