CAMeLBERT-DA NER Model

Model description

CAMeLBERT-DA NER Model is a Named Entity Recognition (NER) model that was built by fine-tuning the CAMeLBERT Dialectal Arabic (DA) model. For the fine-tuning, we used the ANERcorp dataset. Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models."

  • Our fine-tuning code can be found here.

    Intended uses

    You can use the CAMeLBERT-DA NER model directly as part of our CAMeL Tools NER component (recommended) or as part of the transformers pipeline.

    How to use

    To use the model with the CAMeL Tools NER component:
    >>> from camel_tools.ner import NERecognizer
    >>> from camel_tools.tokenizers.word import simple_word_tokenize
    >>> ner = NERecognizer('CAMeL-Lab/bert-base-arabic-camelbert-da-ner')
    >>> sentence = simple_word_tokenize('إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع')
    >>> ner.predict_sentence(sentence)
    >>> ['O', 'B-LOC', 'O', 'O', 'O', 'O', 'B-LOC', 'I-LOC', 'I-LOC', 'O']
    
    You can also use the NER model directly with a transformers pipeline:
    >>> from transformers import pipeline
    >>> ner = pipeline('ner', model='CAMeL-Lab/bert-base-arabic-camelbert-da-ner')
    >>> ner("إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع")
    [{'word': 'أبوظبي',
    'score': 0.9895730018615723,
    'entity': 'B-LOC',
    'index': 2,
    'start': 6,
    'end': 12},
    {'word': 'الإمارات',
    'score': 0.8156259655952454,
    'entity': 'B-LOC',
    'index': 8,
    'start': 33,
    'end': 41},
    {'word': 'العربية',
    'score': 0.890906810760498,
    'entity': 'I-LOC',
    'index': 9,
    'start': 42,
    'end': 49},
    {'word': 'المتحدة',
    'score': 0.8169114589691162,
    'entity': 'I-LOC',
    'index': 10,
    'start': 50,
    'end': 57}]
    
  • Note*: to download our models, you would need transformers>=3.5.0. Otherwise, you could download the models manually.

    Citation

    @inproceedings{inoue-etal-2021-interplay,
       title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models",
       author = "Inoue, Go  and
         Alhafni, Bashar  and
         Baimukan, Nurpeiis  and
         Bouamor, Houda  and
         Habash, Nizar",
       booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
       month = apr,
       year = "2021",
       address = "Kyiv, Ukraine (Online)",
       publisher = "Association for Computational Linguistics",
       abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a da of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.",
    }
    
New

Select AutoNLP in the “Train” menu to fine-tune this model automatically.

Downloads last month
2
Hosted inference API
Token Classification
Examples
Examples
This model can be loaded on the Inference API on-demand.