Edit model card

vowelizer_1203_v3

This model is a fine-tuned version of Buseak/vowelizer_1203_v2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0001
  • Precision: 1.0000
  • Recall: 1.0000
  • F1: 1.0000
  • Accuracy: 1.0000

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0151 1.0 967 0.0037 0.9977 0.9979 0.9978 0.9987
0.0159 2.0 1934 0.0028 0.9982 0.9981 0.9982 0.9991
0.0138 3.0 2901 0.0023 0.9986 0.9984 0.9985 0.9993
0.0121 4.0 3868 0.0017 0.9988 0.9989 0.9989 0.9995
0.0106 5.0 4835 0.0014 0.9988 0.9991 0.9990 0.9996
0.0089 6.0 5802 0.0010 0.9993 0.9993 0.9993 0.9997
0.0084 7.0 6769 0.0009 0.9994 0.9994 0.9994 0.9997
0.0072 8.0 7736 0.0007 0.9995 0.9996 0.9995 0.9998
0.0067 9.0 8703 0.0005 0.9997 0.9997 0.9997 0.9999
0.0057 10.0 9670 0.0004 0.9996 0.9997 0.9997 0.9999
0.005 11.0 10637 0.0004 0.9996 0.9997 0.9997 0.9999
0.0043 12.0 11604 0.0003 0.9997 0.9998 0.9997 0.9999
0.0039 13.0 12571 0.0002 0.9998 0.9998 0.9998 0.9999
0.0034 14.0 13538 0.0002 0.9998 0.9999 0.9999 1.0000
0.0032 15.0 14505 0.0001 0.9999 0.9999 0.9999 1.0000
0.003 16.0 15472 0.0001 0.9999 0.9999 0.9999 1.0000
0.0027 17.0 16439 0.0001 0.9999 0.9999 0.9999 1.0000
0.0022 18.0 17406 0.0001 1.0000 1.0000 1.0000 1.0000
0.002 19.0 18373 0.0001 1.0000 1.0000 1.0000 1.0000
0.0019 20.0 19340 0.0001 1.0000 1.0000 1.0000 1.0000

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.13.3
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.