Edit model card

spellcorrector_1009_v1

This model is a fine-tuned version of google/canine-s on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0188
  • Precision: 0.9947
  • Recall: 0.9968
  • F1: 0.9958
  • Accuracy: 0.9941

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.2712 1.0 1951 0.2093 0.9634 0.9655 0.9645 0.9423
0.2165 2.0 3902 0.1618 0.9645 0.9671 0.9658 0.9541
0.1801 3.0 5853 0.1308 0.9667 0.9708 0.9687 0.9641
0.1473 4.0 7804 0.1003 0.9714 0.9734 0.9724 0.9713
0.1278 5.0 9755 0.0872 0.9761 0.9772 0.9766 0.9757
0.1058 6.0 11706 0.0774 0.9752 0.9825 0.9788 0.9779
0.0948 7.0 13657 0.0682 0.9815 0.9851 0.9833 0.9806
0.0865 8.0 15608 0.0609 0.9847 0.9899 0.9873 0.9825
0.0812 9.0 17559 0.0516 0.9842 0.9904 0.9873 0.9849
0.071 10.0 19510 0.0477 0.9873 0.9926 0.9899 0.9862
0.0658 11.0 21461 0.0404 0.9873 0.9920 0.9897 0.9880
0.0571 12.0 23412 0.0360 0.9899 0.9915 0.9907 0.9891
0.0512 13.0 25363 0.0316 0.9905 0.9936 0.9920 0.9904
0.0511 14.0 27314 0.0307 0.9884 0.9936 0.9910 0.9908
0.047 15.0 29265 0.0261 0.9921 0.9947 0.9934 0.9919
0.0413 16.0 31216 0.0239 0.9926 0.9958 0.9942 0.9925
0.0412 17.0 33167 0.0220 0.9947 0.9963 0.9955 0.9932
0.0371 18.0 35118 0.0206 0.9947 0.9963 0.9955 0.9936
0.0368 19.0 37069 0.0191 0.9947 0.9968 0.9958 0.9940
0.032 20.0 39020 0.0188 0.9947 0.9968 0.9958 0.9941

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.