Edit model card

canine_vowelizer_0706_v2

This model is a fine-tuned version of google/canine-s on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0003
  • Precision: 1.0000
  • Recall: 1.0000
  • F1: 1.0000
  • Accuracy: 1.0000

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.161 1.0 3902 0.1236 0.9999 1.0000 0.9999 0.9578
0.1197 2.0 7804 0.0883 1.0000 1.0000 1.0000 0.9689
0.0978 3.0 11706 0.0626 1.0000 1.0000 1.0000 0.9779
0.0808 4.0 15608 0.0454 1.0000 1.0000 1.0000 0.9838
0.0668 5.0 19510 0.0320 1.0000 1.0000 1.0000 0.9885
0.0524 6.0 23412 0.0219 1.0000 1.0000 1.0000 0.9921
0.042 7.0 27314 0.0150 1.0000 1.0000 1.0000 0.9946
0.0348 8.0 31216 0.0109 1.0000 1.0000 1.0000 0.9961
0.0286 9.0 35118 0.0072 1.0000 1.0000 1.0000 0.9974
0.025 10.0 39020 0.0049 1.0000 1.0000 1.0000 0.9983
0.0183 11.0 42922 0.0035 1.0000 1.0000 1.0000 0.9988
0.0157 12.0 46824 0.0025 1.0000 1.0000 1.0000 0.9992
0.0113 13.0 50726 0.0016 1.0000 1.0000 1.0000 0.9995
0.0097 14.0 54628 0.0012 1.0000 1.0000 1.0000 0.9996
0.0081 15.0 58530 0.0008 1.0000 1.0000 1.0000 0.9998
0.0071 16.0 62432 0.0007 1.0000 1.0000 1.0000 0.9998
0.0054 17.0 66334 0.0005 1.0000 1.0000 1.0000 0.9999
0.0044 18.0 70236 0.0004 1.0000 1.0000 1.0000 0.9999
0.0053 19.0 74138 0.0003 1.0000 1.0000 1.0000 1.0000
0.0039 20.0 78040 0.0003 1.0000 1.0000 1.0000 1.0000

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.