Edit model card

tmVar_5e-05_30_03

This model is a fine-tuned version of microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0230
  • Precision: 0.8677
  • Recall: 0.8865
  • F1: 0.8770
  • Accuracy: 0.9964

Model description

Trained on Token set with max_length=475

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 500

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.3602 1.39 25 0.0547 0.4823 0.3676 0.4172 0.9851
0.0498 2.78 50 0.0305 0.4518 0.5568 0.4988 0.9912
0.0237 4.17 75 0.0198 0.6338 0.7297 0.6784 0.9942
0.0089 5.56 100 0.0164 0.7895 0.8919 0.8376 0.9960
0.0036 6.94 125 0.0138 0.7826 0.8757 0.8265 0.9967
0.0023 8.33 150 0.0148 0.8462 0.8919 0.8684 0.9969
0.0012 9.72 175 0.0159 0.7890 0.9297 0.8536 0.9966
0.0012 11.11 200 0.0163 0.845 0.9135 0.8779 0.9970
0.001 12.5 225 0.0165 0.8534 0.8811 0.8670 0.9967
0.0012 13.89 250 0.0215 0.8020 0.8757 0.8372 0.9961
0.0008 15.28 275 0.0192 0.875 0.9081 0.8912 0.9970
0.0007 16.67 300 0.0192 0.875 0.9081 0.8912 0.9970
0.0005 18.06 325 0.0192 0.875 0.9081 0.8912 0.9970
0.0009 19.44 350 0.0230 0.8677 0.8865 0.8770 0.9964

Framework versions

  • Transformers 4.27.4
  • Pytorch 1.13.1+cu116
  • Datasets 2.11.0
  • Tokenizers 0.13.2
Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.