Edit model card

Yepes_5e-05_29_03

This model is a fine-tuned version of microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1549
  • Precision: 0.5725
  • Recall: 0.4261
  • F1: 0.4886
  • Accuracy: 0.9781

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 500

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.4799 5.0 25 0.1950 0.0 0.0 0.0 0.9697
0.1703 10.0 50 0.1385 0.0 0.0 0.0 0.9697
0.0981 15.0 75 0.1336 0.3361 0.2273 0.2712 0.9740
0.0594 20.0 100 0.1192 0.4150 0.3466 0.3777 0.9757
0.0318 25.0 125 0.1293 0.5039 0.3693 0.4262 0.9775
0.0177 30.0 150 0.1303 0.5123 0.4716 0.4911 0.9767
0.0114 35.0 175 0.1363 0.5411 0.4489 0.4907 0.9773
0.0074 40.0 200 0.1459 0.5455 0.4773 0.5091 0.9774
0.0058 45.0 225 0.1442 0.5190 0.4659 0.4910 0.9767
0.0044 50.0 250 0.1549 0.5725 0.4261 0.4886 0.9781

Framework versions

  • Transformers 4.27.4
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.