MultiCorp_all_label_5e-05_0404_ES2_strict_tok
This model is a fine-tuned version of microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1346
- Precision: 0.3090
- Recall: 0.1750
- F1: 0.2235
- Accuracy: 0.9674
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.9281 | 0.08 | 25 | 0.2509 | 0.0 | 0.0 | 0.0 | 0.9637 |
0.2583 | 0.15 | 50 | 0.2399 | 0.0 | 0.0 | 0.0 | 0.9637 |
0.2319 | 0.23 | 75 | 0.2011 | 0.0 | 0.0 | 0.0 | 0.9637 |
0.1901 | 0.31 | 100 | 0.1717 | 0.3333 | 0.0014 | 0.0028 | 0.9639 |
0.1894 | 0.39 | 125 | 0.1740 | 0.0 | 0.0 | 0.0 | 0.9637 |
0.1492 | 0.46 | 150 | 0.1454 | 0.1955 | 0.0320 | 0.0550 | 0.9635 |
0.1504 | 0.54 | 175 | 0.1437 | 0.1288 | 0.0139 | 0.0251 | 0.9643 |
0.1559 | 0.62 | 200 | 0.1326 | 0.1795 | 0.1123 | 0.1382 | 0.9665 |
0.1571 | 0.7 | 225 | 0.1406 | 0.3095 | 0.0604 | 0.1010 | 0.9613 |
0.1353 | 0.77 | 250 | 0.1346 | 0.3090 | 0.1750 | 0.2235 | 0.9674 |
Framework versions
- Transformers 4.27.4
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3
- Downloads last month
- 13
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.