BreakShoot/GritLM-7B-Q4_K_M-GGUF
This model was converted to GGUF format from GritLM/GritLM-7B
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo BreakShoot/GritLM-7B-Q4_K_M-GGUF --hf-file gritlm-7b-q4_k_m.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo BreakShoot/GritLM-7B-Q4_K_M-GGUF --hf-file gritlm-7b-q4_k_m.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo BreakShoot/GritLM-7B-Q4_K_M-GGUF --hf-file gritlm-7b-q4_k_m.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo BreakShoot/GritLM-7B-Q4_K_M-GGUF --hf-file gritlm-7b-q4_k_m.gguf -c 2048
- Downloads last month
- 5
Model tree for BreakShoot/GritLM-7B-Q4_K_M-GGUF
Base model
GritLM/GritLM-7BDataset used to train BreakShoot/GritLM-7B-Q4_K_M-GGUF
Evaluation results
- accuracy on MTEB AmazonCounterfactualClassification (en)test set self-reported81.179
- ap on MTEB AmazonCounterfactualClassification (en)test set self-reported46.263
- f1 on MTEB AmazonCounterfactualClassification (en)test set self-reported75.446
- accuracy on MTEB AmazonPolarityClassificationtest set self-reported96.516
- ap on MTEB AmazonPolarityClassificationtest set self-reported94.791
- f1 on MTEB AmazonPolarityClassificationtest set self-reported96.515
- accuracy on MTEB AmazonReviewsClassification (en)test set self-reported57.806
- f1 on MTEB AmazonReviewsClassification (en)test set self-reported56.784
- map_at_1 on MTEB ArguAnatest set self-reported38.478
- map_at_10 on MTEB ArguAnatest set self-reported54.955