File size: 41,092 Bytes
22d23ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd1c718
22d23ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd1c718
 
 
22d23ba
 
 
 
 
 
 
 
 
bd1c718
 
 
22d23ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
# coding=utf-8
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on Yandex's YaLM-100B library and the LLaMA
# implementations in transformers library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to LLaMA used by the Yandex team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch YaLM model."""
import math
from typing import List, Optional, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers.modeling_outputs import (BaseModelOutputWithPast,
                                           CausalLMOutputWithPast)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (add_start_docstrings,
                                add_start_docstrings_to_model_forward, logging,
                                replace_return_docstrings)

from configuration_yalm import YalmConfig

logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "YalmConfig"


# Copied from transformers.models.bart.modeling_bart._make_causal_mask
def _make_causal_mask(
    input_ids_shape: torch.Size,
    dtype: torch.dtype,
    device: torch.device,
    past_key_values_length: int = 0,
):
    """
    Make causal mask used for bi-directional self-attention.
    """
    bsz, tgt_len = input_ids_shape
    mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
    mask_cond = torch.arange(mask.size(-1), device=device)
    mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
    mask = mask.to(dtype)

    if past_key_values_length > 0:
        mask = torch.cat(
            [
                torch.zeros(
                    tgt_len, past_key_values_length, dtype=dtype, device=device
                ),
                mask,
            ],
            dim=-1,
        )
    return mask[None, None, :, :].expand(
        bsz, 1, tgt_len, tgt_len + past_key_values_length
    )


# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
    """
    Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
    """
    bsz, src_len = mask.size()
    tgt_len = tgt_len if tgt_len is not None else src_len

    expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)

    inverted_mask = 1.0 - expanded_mask

    return inverted_mask.masked_fill(
        inverted_mask.to(torch.bool), torch.finfo(dtype).min
    )


class YalmRotaryPositionEncoding(nn.Module):
    def __init__(self, max_seq_length: int, hidden_size_per_attention_head: int, dtype):
        super().__init__()
        cos_cached, sin_cached = YalmRotaryPositionEncoding.get_cache_multipliers(
            max_seq_length, hidden_size_per_attention_head, dtype
        )
        self.register_buffer(
            "cos_cached", cos_cached.unsqueeze(1).unsqueeze(2), persistent=False
        )
        self.register_buffer(
            "sin_cached", sin_cached.unsqueeze(1).unsqueeze(2), persistent=False
        )

    def forward(self, hidden_state, context_position):
        seq_length = hidden_state.shape[0]
        cache_slice = slice(context_position, context_position + seq_length)
        return self.apply_rotary_position_encoding(
            hidden_state, self.cos_cached[cache_slice], self.sin_cached[cache_slice]
        )

    @staticmethod
    def get_cache_multipliers(max_seq_length, hidden_size, dtype):
        inv_freqs = 1e-4 ** (
            torch.arange(0, hidden_size, 2, dtype=torch.float) / hidden_size
        )
        positions = torch.arange(max_seq_length, dtype=torch.float)
        angles = positions.unsqueeze(-1) * inv_freqs

        return torch.cos(angles).to(dtype), torch.sin(angles).to(dtype)

    @staticmethod
    def apply_rotary_position_encoding(hidden_state, cos_cached, sin_cached):
        sq, b, np, hn = hidden_state.shape
        half_hn = hn // 2
        left, right = hidden_state[..., :half_hn], hidden_state[..., half_hn:]
        encoded_left = cos_cached * left - sin_cached * right
        encoded_right = sin_cached * left + cos_cached * right
        return torch.cat((encoded_left, encoded_right), dim=3)


class YalmSelfAttention(nn.Module):
    """Parallel self-attention layer abstract class.

    Self-attention layer takes input with size [b, s, h]
    and returns output of the same size.
    """

    def __init__(self, config: YalmConfig, layer_idx: int):
        super().__init__()

        self.attention_mask_func = None
        self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx
        self.layer_idx = layer_idx

        # Per attention head and per partition values.
        self.hidden_size_per_partition = config.hidden_size
        self.num_attention_heads = config.num_attention_heads
        self.hidden_size_per_attention_head = (
            config.hidden_size // config.num_attention_heads
        )

        if (
            self.hidden_size_per_attention_head * self.num_attention_heads
        ) != self.hidden_size_per_partition:
            raise ValueError(
                f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
                f" and `num_heads`: {self.num_heads})."
            )

        self.num_attention_heads_per_partition = config.num_attention_heads

        self.query_key_value = nn.Linear(config.hidden_size, 3 * config.hidden_size)

        self.coeff = None
        self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
        if self.scale_attn_by_inverse_layer_idx:
            self.coeff = self.layer_idx + 1
            self.norm_factor *= self.coeff

        # Dropout. Note that for a single iteration, this layer will generate
        # different outputs on different number of parallel partitions but
        # on average it should not be partition dependent.
        self.attention_dropout = torch.nn.Dropout(config.attention_dropout)

        # Output.
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)

        self.rotary_position_encoding = YalmRotaryPositionEncoding(
            config.max_position_embeddings,
            self.hidden_size_per_attention_head,
            dtype=self.dense.weight.dtype,
        )

    def _transpose_last_dim(self, mixed_layer, num_splits, num_splits_first):
        input_shape = mixed_layer.size()
        if num_splits_first:
            """[s, b, num_splits * np * hn]
            -->(view) [s, b, num_splits, np, hn]
            -->(tranpose) [s, b, np, num_splits, hn]
            -->(view) [s, b, np * num_splits * hn]"""

            intermediate_shape = input_shape[:-1] + (
                num_splits,
                self.num_attention_heads_per_partition,
                self.hidden_size_per_attention_head,
            )

            mixed_layer = mixed_layer.view(*intermediate_shape)
            mixed_layer = mixed_layer.transpose(-2, -3).contiguous()
        else:
            """[s, b, np * hn * num_splits]
            -->(view) [s, b, np, hn, num_splits]
            -->(tranpose) [s, b, np, num_splits, hn]
            -->(view) [s, b, np * num_splits * hn]"""

            intermediate_shape = input_shape[:-1] + (
                self.num_attention_heads_per_partition,
                self.hidden_size_per_attention_head,
                num_splits,
            )

            mixed_layer = mixed_layer.view(*intermediate_shape)
            mixed_layer = mixed_layer.transpose(-1, -2).contiguous()
        mixed_layer = mixed_layer.view(*input_shape)

        return mixed_layer

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        attention_mask: torch.FloatTensor,
        layer_past: Optional[Tuple[torch.Tensor, int]] = None,
        use_cache: Optional[bool] = False,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        # hidden_states: [sq, b, h]

        # =====================
        # Query, Key, and Value
        # =====================

        # Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
        mixed_x_layer = self.query_key_value(hidden_states)

        # [sq, b, (np * 3 * hn)] --> [sq, b, np, 3 * hn]
        new_tensor_shape = mixed_x_layer.size()[:-1] + (
            self.num_attention_heads_per_partition,
            3 * self.hidden_size_per_attention_head,
        )
        mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)

        # [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
        (query_layer, key_layer, value_layer) = torch.split(
            mixed_x_layer, self.hidden_size_per_attention_head, dim=-1
        )

        context_position = 0 if layer_past is None else layer_past[2]
        query_layer = self.rotary_position_encoding(query_layer, context_position)
        key_layer = self.rotary_position_encoding(key_layer, context_position)

        # ==================================
        # Adjust key and value for inference
        # ==================================

        if layer_past is not None:
            past_key, past_value, sq_length = layer_past
            key_layer = torch.cat((past_key.type_as(key_layer), key_layer), dim=0)
            value_layer = torch.cat(
                (past_value.type_as(value_layer), value_layer), dim=0
            )
            sq_length += 1
        else:
            sq_length = key_layer.size()[0]

        present = (key_layer, value_layer, sq_length) if use_cache else None

        # ===================================
        # Raw attention scores. [b, np, s, s]
        # ===================================

        # [b, np, sq, sk]
        output_size = (
            query_layer.size(1),
            query_layer.size(2),
            query_layer.size(0),
            key_layer.size(0),
        )

        # [sq, b, np, hn] -> [sq, b * np, hn]
        query_layer = query_layer.view(
            output_size[2], output_size[0] * output_size[1], -1
        )
        key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1)

        # preallocting result tensor: [b * np, sq, sk]
        matmul_result = torch.empty(
            output_size[0] * output_size[1],
            output_size[2],
            output_size[3],
            dtype=query_layer.dtype,
            device=query_layer.device,
        )

        # Raw attention scores. [b * np, sq, sk]
        matmul_result = torch.baddbmm(
            matmul_result,
            query_layer.transpose(0, 1),  # [b * np, sq, hn]
            key_layer.transpose(0, 1).transpose(1, 2),  # [b * np, hn, sk]
            beta=0.0,
            alpha=(1.0 / self.norm_factor),
        )

        # change view to [b, np, sq, sk]
        attention_scores = matmul_result.view(*output_size)

        # ==================================================
        # Update attention mask for inference. [b, np, sq, sk]
        # ==================================================

        # if attention_mask is not None:
        #     if layer_past is not None:
        #         attention_mask = attention_mask[
        #             ..., attention_scores.size(3) - 1, : attention_scores.size(3)
        #         ].unsqueeze(2)
        #     else:
        #         attention_mask = attention_mask[
        #             ..., : attention_scores.size(3), : attention_scores.size(3)
        #         ]

        # ===========================
        # Attention probs and dropout
        # ===========================

        # attention scores and attention mask [b, np, sq, sk]
        if self.coeff is not None:
            attention_scores = attention_scores * self.coeff
        if attention_mask is not None:
            attention_scores += attention_mask
        attention_probs = torch.nn.Softmax(dim=-1)(attention_scores)

        attention_probs = self.attention_dropout(attention_probs) # TODO: why the fuck no scale???

        # =========================
        # Context layer. [sq, b, hp]
        # =========================

        # value_layer -> context layer.
        # [sk, b, np, hn] --> [b, np, sq, hn]

        # context layer shape: [b, np, sq, hn]
        output_size = (
            value_layer.size(1),
            value_layer.size(2),
            query_layer.size(0),
            value_layer.size(3),
        )

        # change view [sk, b * np, hn]
        value_layer = value_layer.view(
            value_layer.size(0), output_size[0] * output_size[1], -1
        )

        # change view [b * np, sq, sk]
        attention_probs = attention_probs.view(
            output_size[0] * output_size[1], output_size[2], -1
        )

        # matmul: [b * np, sq, hn]
        context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))

        # change view [b, np, sq, hn]
        context_layer = context_layer.view(*output_size)

        # [b, np, sq, hn] --> [sq, b, np, hn]
        context_layer = context_layer.permute(2, 0, 1, 3).contiguous()

        # [sq, b, np, hn] --> [sq, b, hp]
        new_context_layer_shape = context_layer.size()[:-2] + (
            self.hidden_size_per_partition,
        )
        context_layer = context_layer.view(*new_context_layer_shape)

        # =================
        # Output. [sq, b, h]
        # =================

        output = self.dense(context_layer)
        output = (output, present)
        if output_attentions:
            outputs += (attention_probs,)

        return output


class YalmMLP(nn.Module):
    """MLP.

    MLP will take the input with h hidden state, project it to 4*h
    hidden dimension, perform nonlinear transformation, and project the
    state back into h hidden dimension. At the end, dropout is also
    applied.
    """

    def __init__(self, config: YalmConfig):
        super().__init__()

        self.dense_ffn_hidden = nn.Linear(
            config.hidden_size,
            config.intermediate_size,
        )

        self.activation_type = config.activation_type
        self.is_gated = config.activation_type in ["geglu"]

        self.activation_func = torch.nn.functional.gelu

        if self.is_gated:
            self.dense_ffn_gate = nn.Linear(
                config.hidden_size,
                config.intermediate_size,
            )

        self.dense_ffn_output = nn.Linear(
            config.intermediate_size,
            config.hidden_size,
        )

    def forward(self, hidden_states):
        intermediate_parallel = self.dense_ffn_hidden(hidden_states)

        intermediate_parallel = self.activation_func(intermediate_parallel)

        if self.is_gated:
            gate = self.dense_ffn_gate(hidden_states)
            intermediate_gated = intermediate_parallel * gate
        else:
            intermediate_gated = intermediate_parallel

        output = self.dense_ffn_output(intermediate_gated)
        return output


class YalmTransformerLayer(nn.Module):
    """A single transformer layer.

    Transformore layer takes input with size [b, s, h] and returns an
    output of the same size.
    """

    def __init__(self, config: YalmConfig, layer_idx: int):
        super().__init__()
        self.layer_idx = layer_idx

        self.apply_residual_connection_post_layernorm = (
            config.apply_residual_connection_post_layernorm
        )

        # Layernorm on the input data.
        if self.layer_idx > 0:
            self.input_layernorm = nn.LayerNorm(
                config.hidden_size,
                eps=config.layernorm_epsilon,
            )

        # Self attention.
        self.attention = YalmSelfAttention(config, layer_idx)
        self.hidden_dropout = config.hidden_dropout

        # Layernorm on the input data.
        self.post_attention_layernorm = nn.LayerNorm(
            config.hidden_size, eps=config.layernorm_epsilon
        )

        # MLP
        self.mlp = YalmMLP(config)

    def forward(
        self,
        hidden_states: Optional[torch.FloatTensor],
        attention_mask: Optional[torch.FloatTensor] = None,
        layer_past: Optional[Tuple[torch.Tensor, int]] = None,
        use_cache: Optional[bool] = False,
        output_attentions: Optional[bool] = False,
    ):
        # hidden_states: [b, s, h]

        # Layer norm at the begining of the transformer layer.
        if self.layer_idx > 0:
            attention_input = self.input_layernorm(hidden_states)
        else:
            attention_input = hidden_states

        # Self attention.
        attention_layer_outputs = self.attention(
            attention_input,
            attention_mask,
            layer_past=layer_past,
            use_cache=use_cache,
            output_attentions=output_attentions,
        )
        attention_output = attention_layer_outputs[
            0
        ]  # output_attn: attention_output, present, (attn_weights)
        outputs = attention_layer_outputs[1:]

        # Residual connection.
        if self.apply_residual_connection_post_layernorm:
            residual = attention_input
        else:
            residual = hidden_states

        attention_output = torch.nn.functional.dropout(
            attention_output, p=self.hidden_dropout, training=self.training # TODO: why the fuck no scale???
        )
        layernorm_input = attention_output + residual

        # Layer norm post the self attention.
        layernorm_output = self.post_attention_layernorm(layernorm_input)

        # MLP.
        mlp_output = self.mlp(layernorm_output)
        residual = layernorm_input

        mlp_output = torch.nn.functional.dropout(
            mlp_output, p=self.hidden_dropout, training=self.training # TODO: why the fuck no scale???
        )
        output = mlp_output + residual

        if use_cache:
            outputs = (output,) + outputs  # hidden_states, present, (attn_weights)
        else:
            outputs = (output,) + outputs[1:]  # hidden_states, (attn_weights)

        return outputs


class YalmTransformer(nn.Module):
    """Transformer class."""

    def __init__(self, config: YalmConfig):
        super().__init__()

        # Number of layers:
        self.num_layers = config.num_layers

        self.layers = torch.nn.ModuleList(
            [YalmTransformerLayer(config, layer_idx=i) for i in range(self.num_layers)]
        )

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        attention_mask: Optional[torch.FloatTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor, int]]] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        gradient_checkpointing: bool = False,
    ):
        # data format change to avoid explicit tranposes : [b s h] --> [s b h]
        hidden_states = hidden_states.transpose(0, 1).contiguous()

        presents = () if use_cache else None
        all_attentions = () if output_attentions else None
        all_hidden_states = () if output_hidden_states else None
        for i, (layer, layer_past) in enumerate(zip(self.layers, past_key_values)):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            if gradient_checkpointing and self.training:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        # None for layer_past
                        return module(*inputs, use_cache, None, output_attentions)

                    return custom_forward

                outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(layer),
                    hidden_states,
                    attention_mask,
                )
            else:
                outputs = layer(
                    hidden_states,
                    attention_mask=attention_mask,
                    layer_past=layer_past,
                    use_cache=use_cache,
                    output_attentions=output_attentions,
                )
            hidden_states = outputs[0]
            if use_cache is True:
                presents = presents + (outputs[1],)
            if output_attentions:
                all_attentions = all_attentions + (outputs[2 if use_cache else 1],)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        # reverting data format change [s b h] --> [b s h]
        output = hidden_states.transpose(0, 1).contiguous()

        return output, presents, all_hidden_states, all_attentions


class YalmProjector(nn.Module):
    def __init__(self, config: YalmConfig, dtype, device):
        super().__init__()

        self.embedding_size = config.embedding_size
        self.hidden_size = config.hidden_size
        self.apply_residual_connection_post_layernorm = (
            config.apply_residual_connection_post_layernorm
        )

        if not self.apply_residual_connection_post_layernorm:
            self.input_layernorm = nn.LayerNorm(
                config.embedding_size, eps=config.layernorm_epsilon
            )

        if config.embedding_size != config.hidden_size:
            self.register_buffer(
                "projector",
                torch.eye(
                    config.embedding_size,
                    config.hidden_size,
                ),
                persistent=False,
            )

    def forward(self, data):
        if self.apply_residual_connection_post_layernorm:
            hidden_states = data
        else:
            hidden_states = self.input_layernorm(data)

        if self.embedding_size != self.hidden_size:
            hidden_states = hidden_states @ self.projector

        return hidden_states


class YalmOutputLayer(nn.Module):
    def __init__(self, config: YalmConfig) -> None:
        super().__init__()
        self.input_layer_norm = nn.LayerNorm(
            config.hidden_size, eps=config.layernorm_epsilon
        )

        self.dense = nn.Linear(
            config.hidden_size,
            config.embedding_size,
        )

        self.activation = torch.nn.functional.gelu

        self.output_layer_norm = nn.LayerNorm(
            config.embedding_size,
            eps=config.layernorm_epsilon,
        )

    def forward(self, input_data):
        output = self.input_layer_norm(input_data)
        output = self.dense(output)
        output = self.activation(output)
        output = self.output_layer_norm(output)
        return output


YALM_START_DOCSTRING = r"""
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`YalmConfig`]):
            Model configuration class with all the parameters of the model. Initializing with a config file does not
            load the weights associated with the model, only the configuration. Check out the
            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""


@add_start_docstrings(
    "The bare Yalm Model outputting raw hidden-states without any specific head on top.",
    YALM_START_DOCSTRING,
)
class YalmPreTrainedModel(PreTrainedModel):
    config_class = YalmConfig
    base_model_prefix = "yalm"
    supports_gradient_checkpointing = True
    _no_split_modules = ["YalmTransformerLayer"]

    def _init_weights(self, module):
        std = self.config.initializer_range
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, YalmModel):
            module.gradient_checkpointing = value


YALM_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
            it.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
            `past_key_values`).

            If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
            and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
            information on the default strategy.

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
            `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.

            Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
            blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.

            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
            `decoder_input_ids` of shape `(batch_size, sequence_length)`.
        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
            model's internal embedding lookup matrix.
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


@add_start_docstrings(
    "The bare YaLM Model outputting raw hidden-states without any specific head on top.",
    YALM_START_DOCSTRING,
)
class YalmModel(YalmPreTrainedModel):
    """
    Transformer decoder consisting of *config.num_layers* layers. Each layer is a [`YalmDecoderLayer`]

    Args:
        config: YalmConfig
    """

    def __init__(self, config: YalmConfig):
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.padded_vocab_size = config.padded_vocab_size

        self.embed_tokens = nn.Embedding(
            config.padded_vocab_size, config.embedding_size, self.padding_idx
        )
        self.projector = YalmProjector(
            config, self.embed_tokens.weight.dtype, self.embed_tokens.weight.device
        )
        self.transformer = YalmTransformer(config)
        self.output_layer = YalmOutputLayer(config)

        self.gradient_checkpointing = False

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    def _prepare_decoder_attention_mask(
        self, attention_mask, input_shape, inputs_embeds, past_key_values_length
    ):
        # create causal mask
        # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
        combined_attention_mask = None
        if input_shape[-1] > 1:
            combined_attention_mask = _make_causal_mask(
                input_shape,
                inputs_embeds.dtype,
                device=inputs_embeds.device,
                past_key_values_length=past_key_values_length,
            )

        if attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            expanded_attn_mask = _expand_mask(
                attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
            ).to(inputs_embeds.device)
            combined_attention_mask = (
                expanded_attn_mask
                if combined_attention_mask is None
                else expanded_attn_mask + combined_attention_mask
            )

        return combined_attention_mask

    @add_start_docstrings_to_model_forward(YALM_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPast]:
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError(
                "You cannot specify both input_ids and inputs_embeds at the same time"
            )
        elif input_ids is not None:
            input_shape = input_ids.size()
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        batch_size, seq_length = input_shape

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        seq_length_with_past = seq_length
        past_key_values_length = 0

        if past_key_values is not None:
            past_key_values_length = past_key_values[0][0].shape[2]
            seq_length_with_past = seq_length_with_past + past_key_values_length
        else:
            past_key_values = tuple(None for _ in range(self.config.num_layers))
        if attention_mask is None:
            attention_mask = torch.ones(
                (batch_size, seq_length_with_past),
                dtype=torch.bool,
                device=inputs_embeds.device,
            )
        attention_mask = self._prepare_decoder_attention_mask(
            attention_mask,
            (batch_size, seq_length),
            inputs_embeds,
            past_key_values_length,
        )

        hidden_states = self.projector(inputs_embeds)

        hidden_states, presents, all_hidden_states, all_attentions = self.transformer(
            hidden_states,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            gradient_checkpointing=self.gradient_checkpointing,
        )
        last_hidden_states = self.output_layer(hidden_states)
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (last_hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [
                    last_hidden_states,
                    presents,
                    all_hidden_states,
                    all_attentions,
                ]
                if v is not None
            )

        return BaseModelOutputWithPast(
            last_hidden_state=last_hidden_states,
            past_key_values=presents,
            hidden_states=all_hidden_states,
            attentions=all_attentions,
        )


@add_start_docstrings(
    """
    YaLM Model with a `language modeling` head on top (linear layer with weights tied to the input
    embeddings).
    """,
    YALM_START_DOCSTRING,
)
class YalmForCausalLM(YalmPreTrainedModel):
    _tied_weights_keys = [r"yalm.embed_tokens.weight", r"lm_head.weight"]

    def __init__(self, config: YalmConfig):
        super().__init__(config)

        self.yalm = YalmModel(config)
        self.lm_head = nn.Linear(
            config.embedding_size, config.padded_vocab_size, bias=False
        )
        self.out_bias = torch.nn.Parameter(
            torch.zeros(
                config.padded_vocab_size,
            )
        )

        # Initialize weights and apply final processing
        self.post_init()

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    @add_start_docstrings_to_model_forward(
        YALM_INPUTS_DOCSTRING.format("batch_size, sequence_length")
    )
    @replace_return_docstrings(
        output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
    )
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        r"""
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
            `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional tensors are
            only required when the model is used as a decoder in a Sequence to Sequence model.

            Contains pre-computed hidden-states (key and values in the self-attention blocks that can be used (see
            `past_key_values` input) to speed up sequential decoding.

            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
            `decoder_input_ids` of shape `(batch_size, sequence_length)`.
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
            `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
            ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`.
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).

        Returns:

        Example:

        ```python
        >>> from transformers import AutoTokenizer, YalmForCausalLM, YalmConfig
        >>> import torch

        >>> tokenizer = AutoTokenizer.from_pretrained("TODO")
        >>> config = YalmConfig.from_pretrained("TODO")
        >>> config.is_decoder = True
        >>> model = YalmForCausalLM.from_pretrained("TODO", config=config)

        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
        >>> outputs = model(**inputs)

        >>> prediction_logits = outputs.logits
        ```"""
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        outputs = self.yalm(
            input_ids,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]
        lm_logits = self.lm_head(hidden_states) + self.out_bias

        lm_loss = None
        if labels is not None:
            # we are doing next-token prediction; shift prediction scores and input ids by one
            shift_logits = lm_logits[:, :-1, :].contiguous()
            labels = labels[:, 1:].contiguous()
            loss_fct = CrossEntropyLoss()
            lm_loss = loss_fct(
                shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1)
            )

        if not return_dict:
            output = (lm_logits,) + outputs[1:]
            return ((lm_loss,) + output) if lm_loss is not None else output

        return CausalLMOutputWithPast(
            loss=lm_loss,
            logits=lm_logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def prepare_inputs_for_generation(
        self, input_ids, past_key_values=None, attention_mask=None, **kwargs
    ):
        input_shape = input_ids.shape

        # cut decoder_input_ids if past is used
        if past_key_values and past_key_values[0] is not None:
            input_ids = input_ids[:, -1:]

        # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
        if attention_mask is None:
            attention_mask = input_ids.new_ones(input_shape)

        return {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
            "past_key_values": past_key_values,
        }

    def _reorder_cache(self, past_key_values, beam_idx):
        reordered_past = ()
        for layer_past in past_key_values:
            reordered_past += (
                tuple(
                    past_state.index_select(0, beam_idx)
                    for past_state in layer_past[:2]
                )
                + layer_past[2:],
            )
        return reordered_past