BlackSamorez
commited on
Commit
·
22d23ba
1
Parent(s):
865b874
initial implementation
Browse files- config.json +27 -0
- configuration_yalm.py +119 -0
- modeling_yalm.py +1083 -0
- spiece.model +3 -0
- tokenization_yalm.py +250 -0
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"RWForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_yalm.YalmConfig",
|
8 |
+
"AutoModel": "modelling_yalm.YalmModel",
|
9 |
+
"AutoModelForSequenceClassification": "modelling_yalm.RWForSequenceClassification",
|
10 |
+
"AutoModelForCausalLM": "modelling_yalm.YalmForCausalLM"
|
11 |
+
},
|
12 |
+
"padded_vocab_size": 128000,
|
13 |
+
"embedding_size": 2048,
|
14 |
+
"hidden_size": 10240,
|
15 |
+
"intermediate_size": 27308,
|
16 |
+
"num_layers": 80,
|
17 |
+
"num_attention_heads": 128,
|
18 |
+
"scale_attn_by_inverse_layer_idx": true,
|
19 |
+
"activation_type": "geglu",
|
20 |
+
"model_type": "YaLM",
|
21 |
+
"max_position_embeddings": 1024,
|
22 |
+
"apply_residual_connection_post_layernorm": false,
|
23 |
+
"initializer_range": 0.02,
|
24 |
+
"layernorm_epsilon": 1e-5,
|
25 |
+
"torch_dtype": "float16",
|
26 |
+
"transformers_version": "4.32.1"
|
27 |
+
}
|
configuration_yalm.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on Yandex's YaLM-100B library and the LLaMA
|
5 |
+
# implementations in transformers library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to LLaMA used by the Yandex team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
"""YaLM model configuration"""
|
21 |
+
|
22 |
+
from transformers.configuration_utils import PretrainedConfig
|
23 |
+
from transformers.utils import logging
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
YALM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
28 |
+
|
29 |
+
|
30 |
+
class YalmConfig(PretrainedConfig):
|
31 |
+
r"""
|
32 |
+
This is the configuration class to store the configuration of a [`YalmModel`]. It is used to instantiate an YaLM
|
33 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
34 |
+
defaults will yield a similar configuration to that of the YaLM-100B.
|
35 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
36 |
+
documentation from [`PretrainedConfig`] for more information.
|
37 |
+
Args:
|
38 |
+
padded_vocab_size (`int`, *optional*, defaults to 128000):
|
39 |
+
Vocabulary size of the YaLM model. Defines the number of different tokens that can be represented by the
|
40 |
+
`inputs_ids` passed when calling [`YalmModel`]
|
41 |
+
embedding_size (`int`, *optional*, defaults to 2048):
|
42 |
+
Token embeding dimension
|
43 |
+
hidden_size (`int`, *optional*, defaults to 10240):
|
44 |
+
Dimension of the hidden representations.
|
45 |
+
intermediate_size (`int`, *optional*, defaults to 27308):
|
46 |
+
Dimension of the MLP representations.
|
47 |
+
num_layers (`int`, *optional*, defaults to 80):
|
48 |
+
Number of hidden layers in the Transformer encoder.
|
49 |
+
num_attention_heads (`int`, *optional*, defaults to 128):
|
50 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
51 |
+
scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to True):
|
52 |
+
Whether to scale attention output by inverse layer depth
|
53 |
+
activation_type (`str` or `function`, *optional*, defaults to `"geglu"`):
|
54 |
+
The non-linear activation function (function or string) in the decoder.
|
55 |
+
max_position_embeddings (`int`, *optional*, defaults to 1024):
|
56 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
57 |
+
just in case (e.g., 512 or 1024 or 2048).
|
58 |
+
apply_residual_connection_post_layernorm (`bool`, *optional*, defaults to `False`):
|
59 |
+
If enabled, use the layer norm of the hidden states as the residual in the transformer blocks
|
60 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
61 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
62 |
+
layernorm_epsilon (`float`, *optional*, defaults to 1e-12):
|
63 |
+
The epsilon used by the layer normalization layers.
|
64 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
65 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
66 |
+
relevant if `config.is_decoder=True`.
|
67 |
+
Example:
|
68 |
+
```python
|
69 |
+
>>> from transformers import YalmModel, YalmConfig
|
70 |
+
>>> # Initializing a YaLM yalm-100b style configuration
|
71 |
+
>>> configuration = YalmConfig()
|
72 |
+
>>> # Initializing a model from the yalm-100b style configuration
|
73 |
+
>>> model = YalmModel(configuration)
|
74 |
+
>>> # Accessing the model configuration
|
75 |
+
>>> configuration = model.config
|
76 |
+
```"""
|
77 |
+
model_type = "yalm"
|
78 |
+
|
79 |
+
def __init__(
|
80 |
+
self,
|
81 |
+
padded_vocab_size=128000,
|
82 |
+
embedding_size=2048,
|
83 |
+
hidden_size=10240,
|
84 |
+
intermediate_size=27308,
|
85 |
+
num_layers=80,
|
86 |
+
num_attention_heads=128,
|
87 |
+
scale_attn_by_inverse_layer_idx=True,
|
88 |
+
activation_type="geglu",
|
89 |
+
max_position_embeddings=1024,
|
90 |
+
apply_residual_connection_post_layernorm=False,
|
91 |
+
initializer_range=0.02,
|
92 |
+
layernorm_epsilon=1e-5,
|
93 |
+
attention_dropout=0.1,
|
94 |
+
hidden_dropout=0.1,
|
95 |
+
use_cache=True,
|
96 |
+
bos_token_id=1,
|
97 |
+
eos_token_id=2,
|
98 |
+
**kwargs,
|
99 |
+
):
|
100 |
+
self.padded_vocab_size = padded_vocab_size
|
101 |
+
self.embedding_size = embedding_size
|
102 |
+
self.hidden_size = hidden_size
|
103 |
+
self.intermediate_size = intermediate_size
|
104 |
+
self.num_layers = num_layers
|
105 |
+
self.num_attention_heads = num_attention_heads
|
106 |
+
self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx
|
107 |
+
self.activation_type = activation_type
|
108 |
+
self.max_position_embeddings = max_position_embeddings
|
109 |
+
self.apply_residual_connection_post_layernorm = False
|
110 |
+
self.initializer_range = initializer_range
|
111 |
+
self.layernorm_epsilon = layernorm_epsilon
|
112 |
+
self.attention_dropout = attention_dropout
|
113 |
+
self.hidden_dropout = hidden_dropout
|
114 |
+
self.use_cache = use_cache
|
115 |
+
super().__init__(
|
116 |
+
bos_token_id=bos_token_id,
|
117 |
+
eos_token_id=eos_token_id,
|
118 |
+
**kwargs,
|
119 |
+
)
|
modeling_yalm.py
ADDED
@@ -0,0 +1,1083 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on Yandex's YaLM-100B library and the LLaMA
|
5 |
+
# implementations in transformers library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to LLaMA used by the Yandex team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" PyTorch YaLM model."""
|
21 |
+
import math
|
22 |
+
from typing import List, Optional, Tuple, Union
|
23 |
+
|
24 |
+
import torch
|
25 |
+
import torch.utils.checkpoint
|
26 |
+
from torch import nn
|
27 |
+
from torch.nn import CrossEntropyLoss
|
28 |
+
from transformers.modeling_outputs import (BaseModelOutputWithPast,
|
29 |
+
CausalLMOutputWithPast)
|
30 |
+
from transformers.modeling_utils import PreTrainedModel
|
31 |
+
from transformers.utils import (add_start_docstrings,
|
32 |
+
add_start_docstrings_to_model_forward, logging,
|
33 |
+
replace_return_docstrings)
|
34 |
+
|
35 |
+
from configuration_yalm import YalmConfig
|
36 |
+
|
37 |
+
logger = logging.get_logger(__name__)
|
38 |
+
|
39 |
+
_CONFIG_FOR_DOC = "YalmConfig"
|
40 |
+
|
41 |
+
|
42 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
43 |
+
def _make_causal_mask(
|
44 |
+
input_ids_shape: torch.Size,
|
45 |
+
dtype: torch.dtype,
|
46 |
+
device: torch.device,
|
47 |
+
past_key_values_length: int = 0,
|
48 |
+
):
|
49 |
+
"""
|
50 |
+
Make causal mask used for bi-directional self-attention.
|
51 |
+
"""
|
52 |
+
bsz, tgt_len = input_ids_shape
|
53 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
54 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
55 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
56 |
+
mask = mask.to(dtype)
|
57 |
+
|
58 |
+
if past_key_values_length > 0:
|
59 |
+
mask = torch.cat(
|
60 |
+
[
|
61 |
+
torch.zeros(
|
62 |
+
tgt_len, past_key_values_length, dtype=dtype, device=device
|
63 |
+
),
|
64 |
+
mask,
|
65 |
+
],
|
66 |
+
dim=-1,
|
67 |
+
)
|
68 |
+
return mask[None, None, :, :].expand(
|
69 |
+
bsz, 1, tgt_len, tgt_len + past_key_values_length
|
70 |
+
)
|
71 |
+
|
72 |
+
|
73 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
74 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
75 |
+
"""
|
76 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
77 |
+
"""
|
78 |
+
bsz, src_len = mask.size()
|
79 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
80 |
+
|
81 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
82 |
+
|
83 |
+
inverted_mask = 1.0 - expanded_mask
|
84 |
+
|
85 |
+
return inverted_mask.masked_fill(
|
86 |
+
inverted_mask.to(torch.bool), torch.finfo(dtype).min
|
87 |
+
)
|
88 |
+
|
89 |
+
|
90 |
+
class YalmRotaryPositionEncoding(nn.Module):
|
91 |
+
def __init__(self, max_seq_length: int, hidden_size_per_attention_head: int, dtype):
|
92 |
+
super().__init__()
|
93 |
+
cos_cached, sin_cached = YalmRotaryPositionEncoding.get_cache_multipliers(
|
94 |
+
max_seq_length, hidden_size_per_attention_head, dtype
|
95 |
+
)
|
96 |
+
self.register_buffer(
|
97 |
+
"cos_cached", cos_cached.unsqueeze(1).unsqueeze(2), persistent=False
|
98 |
+
)
|
99 |
+
self.register_buffer(
|
100 |
+
"sin_cached", sin_cached.unsqueeze(1).unsqueeze(2), persistent=False
|
101 |
+
)
|
102 |
+
|
103 |
+
def forward(self, hidden_state, context_position):
|
104 |
+
seq_length = hidden_state.shape[0]
|
105 |
+
cache_slice = slice(context_position, context_position + seq_length)
|
106 |
+
return self.apply_rotary_position_encoding(
|
107 |
+
hidden_state, self.cos_cached[cache_slice], self.sin_cached[cache_slice]
|
108 |
+
)
|
109 |
+
|
110 |
+
@staticmethod
|
111 |
+
def get_cache_multipliers(max_seq_length, hidden_size, dtype):
|
112 |
+
inv_freqs = 1e-4 ** (
|
113 |
+
torch.arange(0, hidden_size, 2, dtype=torch.float) / hidden_size
|
114 |
+
)
|
115 |
+
positions = torch.arange(max_seq_length, dtype=torch.float)
|
116 |
+
angles = positions.unsqueeze(-1) * inv_freqs
|
117 |
+
|
118 |
+
return torch.cos(angles).to(dtype), torch.sin(angles).to(dtype)
|
119 |
+
|
120 |
+
@staticmethod
|
121 |
+
def apply_rotary_position_encoding(hidden_state, cos_cached, sin_cached):
|
122 |
+
sq, b, np, hn = hidden_state.shape
|
123 |
+
half_hn = hn // 2
|
124 |
+
left, right = hidden_state[..., :half_hn], hidden_state[..., half_hn:]
|
125 |
+
encoded_left = cos_cached * left - sin_cached * right
|
126 |
+
encoded_right = sin_cached * left + cos_cached * right
|
127 |
+
return torch.cat((encoded_left, encoded_right), dim=3)
|
128 |
+
|
129 |
+
|
130 |
+
class YalmSelfAttention(nn.Module):
|
131 |
+
"""Parallel self-attention layer abstract class.
|
132 |
+
|
133 |
+
Self-attention layer takes input with size [b, s, h]
|
134 |
+
and returns output of the same size.
|
135 |
+
"""
|
136 |
+
|
137 |
+
def __init__(self, config: YalmConfig, layer_idx: int):
|
138 |
+
super().__init__()
|
139 |
+
|
140 |
+
self.attention_mask_func = None
|
141 |
+
self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx
|
142 |
+
self.layer_idx = layer_idx
|
143 |
+
|
144 |
+
# Per attention head and per partition values.
|
145 |
+
self.hidden_size_per_partition = config.hidden_size
|
146 |
+
self.num_attention_heads = config.num_attention_heads
|
147 |
+
self.hidden_size_per_attention_head = (
|
148 |
+
config.hidden_size // config.num_attention_heads
|
149 |
+
)
|
150 |
+
|
151 |
+
if (
|
152 |
+
self.hidden_size_per_attention_head * self.num_attention_heads
|
153 |
+
) != self.hidden_size_per_partition:
|
154 |
+
raise ValueError(
|
155 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
156 |
+
f" and `num_heads`: {self.num_heads})."
|
157 |
+
)
|
158 |
+
|
159 |
+
self.num_attention_heads_per_partition = config.num_attention_heads
|
160 |
+
|
161 |
+
self.query_key_value = nn.Linear(config.hidden_size, 3 * config.hidden_size)
|
162 |
+
|
163 |
+
self.coeff = None
|
164 |
+
self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
|
165 |
+
if self.scale_attn_by_inverse_layer_idx:
|
166 |
+
self.coeff = self.layer_idx + 1
|
167 |
+
self.norm_factor *= self.coeff
|
168 |
+
|
169 |
+
# Dropout. Note that for a single iteration, this layer will generate
|
170 |
+
# different outputs on different number of parallel partitions but
|
171 |
+
# on average it should not be partition dependent.
|
172 |
+
self.attention_dropout = torch.nn.Dropout(config.attention_dropout)
|
173 |
+
|
174 |
+
# Output.
|
175 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
176 |
+
|
177 |
+
self.rotary_position_encoding = YalmRotaryPositionEncoding(
|
178 |
+
config.max_position_embeddings,
|
179 |
+
self.hidden_size_per_attention_head,
|
180 |
+
dtype=self.dense.weight.dtype,
|
181 |
+
)
|
182 |
+
|
183 |
+
def _transpose_last_dim(self, mixed_layer, num_splits, num_splits_first):
|
184 |
+
input_shape = mixed_layer.size()
|
185 |
+
if num_splits_first:
|
186 |
+
"""[s, b, num_splits * np * hn]
|
187 |
+
-->(view) [s, b, num_splits, np, hn]
|
188 |
+
-->(tranpose) [s, b, np, num_splits, hn]
|
189 |
+
-->(view) [s, b, np * num_splits * hn]"""
|
190 |
+
|
191 |
+
intermediate_shape = input_shape[:-1] + (
|
192 |
+
num_splits,
|
193 |
+
self.num_attention_heads_per_partition,
|
194 |
+
self.hidden_size_per_attention_head,
|
195 |
+
)
|
196 |
+
|
197 |
+
mixed_layer = mixed_layer.view(*intermediate_shape)
|
198 |
+
mixed_layer = mixed_layer.transpose(-2, -3).contiguous()
|
199 |
+
else:
|
200 |
+
"""[s, b, np * hn * num_splits]
|
201 |
+
-->(view) [s, b, np, hn, num_splits]
|
202 |
+
-->(tranpose) [s, b, np, num_splits, hn]
|
203 |
+
-->(view) [s, b, np * num_splits * hn]"""
|
204 |
+
|
205 |
+
intermediate_shape = input_shape[:-1] + (
|
206 |
+
self.num_attention_heads_per_partition,
|
207 |
+
self.hidden_size_per_attention_head,
|
208 |
+
num_splits,
|
209 |
+
)
|
210 |
+
|
211 |
+
mixed_layer = mixed_layer.view(*intermediate_shape)
|
212 |
+
mixed_layer = mixed_layer.transpose(-1, -2).contiguous()
|
213 |
+
mixed_layer = mixed_layer.view(*input_shape)
|
214 |
+
|
215 |
+
return mixed_layer
|
216 |
+
|
217 |
+
def forward(
|
218 |
+
self,
|
219 |
+
hidden_states: torch.FloatTensor,
|
220 |
+
attention_mask: torch.FloatTensor,
|
221 |
+
layer_past: Optional[Tuple[torch.Tensor, int]] = None,
|
222 |
+
use_cache: Optional[bool] = False,
|
223 |
+
output_attentions: Optional[bool] = False,
|
224 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
225 |
+
# hidden_states: [sq, b, h]
|
226 |
+
|
227 |
+
# =====================
|
228 |
+
# Query, Key, and Value
|
229 |
+
# =====================
|
230 |
+
|
231 |
+
# Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
|
232 |
+
mixed_x_layer = self.query_key_value(hidden_states)
|
233 |
+
|
234 |
+
# [sq, b, (np * 3 * hn)] --> [sq, b, np, 3 * hn]
|
235 |
+
new_tensor_shape = mixed_x_layer.size()[:-1] + (
|
236 |
+
self.num_attention_heads_per_partition,
|
237 |
+
3 * self.hidden_size_per_attention_head,
|
238 |
+
)
|
239 |
+
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
|
240 |
+
|
241 |
+
# [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
|
242 |
+
(query_layer, key_layer, value_layer) = torch.split(
|
243 |
+
mixed_x_layer, self.hidden_size_per_attention_head, dim=-1
|
244 |
+
)
|
245 |
+
|
246 |
+
context_position = 0 if layer_past is None else layer_past[2]
|
247 |
+
query_layer = self.rotary_position_encoding(query_layer, context_position)
|
248 |
+
key_layer = self.rotary_position_encoding(key_layer, context_position)
|
249 |
+
|
250 |
+
# ==================================
|
251 |
+
# Adjust key and value for inference
|
252 |
+
# ==================================
|
253 |
+
|
254 |
+
if layer_past is not None:
|
255 |
+
past_key, past_value, sq_length = layer_past
|
256 |
+
key_layer = torch.cat((past_key.type_as(key_layer), key_layer), dim=0)
|
257 |
+
value_layer = torch.cat(
|
258 |
+
(past_value.type_as(value_layer), value_layer), dim=0
|
259 |
+
)
|
260 |
+
sq_length += 1
|
261 |
+
else:
|
262 |
+
sq_length = key_layer.size()[0]
|
263 |
+
|
264 |
+
present = (key_layer, value_layer, sq_length) if use_cache else None
|
265 |
+
|
266 |
+
# ===================================
|
267 |
+
# Raw attention scores. [b, np, s, s]
|
268 |
+
# ===================================
|
269 |
+
|
270 |
+
# [b, np, sq, sk]
|
271 |
+
output_size = (
|
272 |
+
query_layer.size(1),
|
273 |
+
query_layer.size(2),
|
274 |
+
query_layer.size(0),
|
275 |
+
key_layer.size(0),
|
276 |
+
)
|
277 |
+
|
278 |
+
# [sq, b, np, hn] -> [sq, b * np, hn]
|
279 |
+
query_layer = query_layer.view(
|
280 |
+
output_size[2], output_size[0] * output_size[1], -1
|
281 |
+
)
|
282 |
+
key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1)
|
283 |
+
|
284 |
+
# preallocting result tensor: [b * np, sq, sk]
|
285 |
+
matmul_result = torch.empty(
|
286 |
+
output_size[0] * output_size[1],
|
287 |
+
output_size[2],
|
288 |
+
output_size[3],
|
289 |
+
dtype=query_layer.dtype,
|
290 |
+
device=query_layer.device,
|
291 |
+
)
|
292 |
+
|
293 |
+
# Raw attention scores. [b * np, sq, sk]
|
294 |
+
matmul_result = torch.baddbmm(
|
295 |
+
matmul_result,
|
296 |
+
query_layer.transpose(0, 1), # [b * np, sq, hn]
|
297 |
+
key_layer.transpose(0, 1).transpose(1, 2), # [b * np, hn, sk]
|
298 |
+
beta=0.0,
|
299 |
+
alpha=(1.0 / self.norm_factor),
|
300 |
+
)
|
301 |
+
|
302 |
+
# change view to [b, np, sq, sk]
|
303 |
+
attention_scores = matmul_result.view(*output_size)
|
304 |
+
|
305 |
+
# ==================================================
|
306 |
+
# Update attention mask for inference. [b, np, sq, sk]
|
307 |
+
# ==================================================
|
308 |
+
|
309 |
+
# if attention_mask is not None:
|
310 |
+
# if layer_past is not None:
|
311 |
+
# attention_mask = attention_mask[
|
312 |
+
# ..., attention_scores.size(3) - 1, : attention_scores.size(3)
|
313 |
+
# ].unsqueeze(2)
|
314 |
+
# else:
|
315 |
+
# attention_mask = attention_mask[
|
316 |
+
# ..., : attention_scores.size(3), : attention_scores.size(3)
|
317 |
+
# ]
|
318 |
+
|
319 |
+
# ===========================
|
320 |
+
# Attention probs and dropout
|
321 |
+
# ===========================
|
322 |
+
|
323 |
+
# attention scores and attention mask [b, np, sq, sk]
|
324 |
+
if self.coeff is not None:
|
325 |
+
attention_scores = attention_scores * self.coeff
|
326 |
+
if attention_mask is not None:
|
327 |
+
attention_scores += attention_mask
|
328 |
+
attention_probs = torch.nn.Softmax(dim=-1)(attention_scores)
|
329 |
+
|
330 |
+
# attention_probs = self.attention_dropout(attention_probs) # TODO: why the fuck no scale???
|
331 |
+
|
332 |
+
# =========================
|
333 |
+
# Context layer. [sq, b, hp]
|
334 |
+
# =========================
|
335 |
+
|
336 |
+
# value_layer -> context layer.
|
337 |
+
# [sk, b, np, hn] --> [b, np, sq, hn]
|
338 |
+
|
339 |
+
# context layer shape: [b, np, sq, hn]
|
340 |
+
output_size = (
|
341 |
+
value_layer.size(1),
|
342 |
+
value_layer.size(2),
|
343 |
+
query_layer.size(0),
|
344 |
+
value_layer.size(3),
|
345 |
+
)
|
346 |
+
|
347 |
+
# change view [sk, b * np, hn]
|
348 |
+
value_layer = value_layer.view(
|
349 |
+
value_layer.size(0), output_size[0] * output_size[1], -1
|
350 |
+
)
|
351 |
+
|
352 |
+
# change view [b * np, sq, sk]
|
353 |
+
attention_probs = attention_probs.view(
|
354 |
+
output_size[0] * output_size[1], output_size[2], -1
|
355 |
+
)
|
356 |
+
|
357 |
+
# matmul: [b * np, sq, hn]
|
358 |
+
context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))
|
359 |
+
|
360 |
+
# change view [b, np, sq, hn]
|
361 |
+
context_layer = context_layer.view(*output_size)
|
362 |
+
|
363 |
+
# [b, np, sq, hn] --> [sq, b, np, hn]
|
364 |
+
context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
|
365 |
+
|
366 |
+
# [sq, b, np, hn] --> [sq, b, hp]
|
367 |
+
new_context_layer_shape = context_layer.size()[:-2] + (
|
368 |
+
self.hidden_size_per_partition,
|
369 |
+
)
|
370 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
371 |
+
|
372 |
+
# =================
|
373 |
+
# Output. [sq, b, h]
|
374 |
+
# =================
|
375 |
+
|
376 |
+
output = self.dense(context_layer)
|
377 |
+
output = (output, present)
|
378 |
+
if output_attentions:
|
379 |
+
outputs += (attention_probs,)
|
380 |
+
|
381 |
+
return output
|
382 |
+
|
383 |
+
|
384 |
+
class YalmMLP(nn.Module):
|
385 |
+
"""MLP.
|
386 |
+
|
387 |
+
MLP will take the input with h hidden state, project it to 4*h
|
388 |
+
hidden dimension, perform nonlinear transformation, and project the
|
389 |
+
state back into h hidden dimension. At the end, dropout is also
|
390 |
+
applied.
|
391 |
+
"""
|
392 |
+
|
393 |
+
def __init__(self, config: YalmConfig):
|
394 |
+
super().__init__()
|
395 |
+
|
396 |
+
self.dense_ffn_hidden = nn.Linear(
|
397 |
+
config.hidden_size,
|
398 |
+
config.intermediate_size,
|
399 |
+
)
|
400 |
+
|
401 |
+
self.activation_type = config.activation_type
|
402 |
+
self.is_gated = config.activation_type in ["geglu"]
|
403 |
+
|
404 |
+
self.activation_func = torch.nn.functional.gelu
|
405 |
+
|
406 |
+
if self.is_gated:
|
407 |
+
self.dense_ffn_gate = nn.Linear(
|
408 |
+
config.hidden_size,
|
409 |
+
config.intermediate_size,
|
410 |
+
)
|
411 |
+
|
412 |
+
self.dense_ffn_output = nn.Linear(
|
413 |
+
config.intermediate_size,
|
414 |
+
config.hidden_size,
|
415 |
+
)
|
416 |
+
|
417 |
+
def forward(self, hidden_states):
|
418 |
+
intermediate_parallel = self.dense_ffn_hidden(hidden_states)
|
419 |
+
|
420 |
+
intermediate_parallel = self.activation_func(intermediate_parallel)
|
421 |
+
|
422 |
+
if self.is_gated:
|
423 |
+
gate = self.dense_ffn_gate(hidden_states)
|
424 |
+
intermediate_gated = intermediate_parallel * gate
|
425 |
+
else:
|
426 |
+
intermediate_gated = intermediate_parallel
|
427 |
+
|
428 |
+
output = self.dense_ffn_output(intermediate_gated)
|
429 |
+
return output
|
430 |
+
|
431 |
+
|
432 |
+
class YalmTransformerLayer(nn.Module):
|
433 |
+
"""A single transformer layer.
|
434 |
+
|
435 |
+
Transformore layer takes input with size [b, s, h] and returns an
|
436 |
+
output of the same size.
|
437 |
+
"""
|
438 |
+
|
439 |
+
def __init__(self, config: YalmConfig, layer_idx: int):
|
440 |
+
super().__init__()
|
441 |
+
self.layer_idx = layer_idx
|
442 |
+
|
443 |
+
self.apply_residual_connection_post_layernorm = (
|
444 |
+
config.apply_residual_connection_post_layernorm
|
445 |
+
)
|
446 |
+
|
447 |
+
# Layernorm on the input data.
|
448 |
+
if self.layer_idx > 0:
|
449 |
+
self.input_layernorm = nn.LayerNorm(
|
450 |
+
config.hidden_size,
|
451 |
+
eps=config.layernorm_epsilon,
|
452 |
+
)
|
453 |
+
|
454 |
+
# Self attention.
|
455 |
+
self.attention = YalmSelfAttention(config, layer_idx)
|
456 |
+
self.hidden_dropout = config.hidden_dropout
|
457 |
+
|
458 |
+
# Layernorm on the input data.
|
459 |
+
self.post_attention_layernorm = nn.LayerNorm(
|
460 |
+
config.hidden_size, eps=config.layernorm_epsilon
|
461 |
+
)
|
462 |
+
|
463 |
+
# MLP
|
464 |
+
self.mlp = YalmMLP(config)
|
465 |
+
|
466 |
+
def forward(
|
467 |
+
self,
|
468 |
+
hidden_states: Optional[torch.FloatTensor],
|
469 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
470 |
+
layer_past: Optional[Tuple[torch.Tensor, int]] = None,
|
471 |
+
use_cache: Optional[bool] = False,
|
472 |
+
output_attentions: Optional[bool] = False,
|
473 |
+
):
|
474 |
+
# hidden_states: [b, s, h]
|
475 |
+
|
476 |
+
# Layer norm at the begining of the transformer layer.
|
477 |
+
if self.layer_idx > 0:
|
478 |
+
attention_input = self.input_layernorm(hidden_states)
|
479 |
+
else:
|
480 |
+
attention_input = hidden_states
|
481 |
+
|
482 |
+
# Self attention.
|
483 |
+
attention_layer_outputs = self.attention(
|
484 |
+
attention_input,
|
485 |
+
attention_mask,
|
486 |
+
layer_past=layer_past,
|
487 |
+
use_cache=use_cache,
|
488 |
+
output_attentions=output_attentions,
|
489 |
+
)
|
490 |
+
attention_output = attention_layer_outputs[
|
491 |
+
0
|
492 |
+
] # output_attn: attention_output, present, (attn_weights)
|
493 |
+
outputs = attention_layer_outputs[1:]
|
494 |
+
|
495 |
+
# Residual connection.
|
496 |
+
if self.apply_residual_connection_post_layernorm:
|
497 |
+
residual = attention_input
|
498 |
+
else:
|
499 |
+
residual = hidden_states
|
500 |
+
|
501 |
+
# attention_output = torch.nn.functional.dropout(
|
502 |
+
# attention_output, p=self.hidden_dropout, training=self.training # TODO: why the fuck no scale???
|
503 |
+
# )
|
504 |
+
layernorm_input = attention_output + residual
|
505 |
+
|
506 |
+
# Layer norm post the self attention.
|
507 |
+
layernorm_output = self.post_attention_layernorm(layernorm_input)
|
508 |
+
|
509 |
+
# MLP.
|
510 |
+
mlp_output = self.mlp(layernorm_output)
|
511 |
+
residual = layernorm_input
|
512 |
+
|
513 |
+
# mlp_output = torch.nn.functional.dropout(
|
514 |
+
# mlp_output, p=self.hidden_dropout, training=self.training # TODO: why the fuck no scale???
|
515 |
+
# )
|
516 |
+
output = mlp_output + residual
|
517 |
+
|
518 |
+
if use_cache:
|
519 |
+
outputs = (output,) + outputs # hidden_states, present, (attn_weights)
|
520 |
+
else:
|
521 |
+
outputs = (output,) + outputs[1:] # hidden_states, (attn_weights)
|
522 |
+
|
523 |
+
return outputs
|
524 |
+
|
525 |
+
|
526 |
+
class YalmTransformer(nn.Module):
|
527 |
+
"""Transformer class."""
|
528 |
+
|
529 |
+
def __init__(self, config: YalmConfig):
|
530 |
+
super().__init__()
|
531 |
+
|
532 |
+
# Number of layers:
|
533 |
+
self.num_layers = config.num_layers
|
534 |
+
|
535 |
+
self.layers = torch.nn.ModuleList(
|
536 |
+
[YalmTransformerLayer(config, layer_idx=i) for i in range(self.num_layers)]
|
537 |
+
)
|
538 |
+
|
539 |
+
def forward(
|
540 |
+
self,
|
541 |
+
hidden_states: torch.FloatTensor,
|
542 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
543 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor, int]]] = None,
|
544 |
+
use_cache: Optional[bool] = None,
|
545 |
+
output_attentions: Optional[bool] = None,
|
546 |
+
output_hidden_states: Optional[bool] = None,
|
547 |
+
gradient_checkpointing: bool = False,
|
548 |
+
):
|
549 |
+
# data format change to avoid explicit tranposes : [b s h] --> [s b h]
|
550 |
+
hidden_states = hidden_states.transpose(0, 1).contiguous()
|
551 |
+
|
552 |
+
presents = () if use_cache else None
|
553 |
+
all_attentions = () if output_attentions else None
|
554 |
+
all_hidden_states = () if output_hidden_states else None
|
555 |
+
for i, (layer, layer_past) in enumerate(zip(self.layers, past_key_values)):
|
556 |
+
if output_hidden_states:
|
557 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
558 |
+
|
559 |
+
if gradient_checkpointing and self.training:
|
560 |
+
|
561 |
+
def create_custom_forward(module):
|
562 |
+
def custom_forward(*inputs):
|
563 |
+
# None for layer_past
|
564 |
+
return module(*inputs, use_cache, None, output_attentions)
|
565 |
+
|
566 |
+
return custom_forward
|
567 |
+
|
568 |
+
outputs = torch.utils.checkpoint.checkpoint(
|
569 |
+
create_custom_forward(layer),
|
570 |
+
hidden_states,
|
571 |
+
attention_mask,
|
572 |
+
)
|
573 |
+
else:
|
574 |
+
outputs = layer(
|
575 |
+
hidden_states,
|
576 |
+
attention_mask=attention_mask,
|
577 |
+
layer_past=layer_past,
|
578 |
+
use_cache=use_cache,
|
579 |
+
output_attentions=output_attentions,
|
580 |
+
)
|
581 |
+
hidden_states = outputs[0]
|
582 |
+
if use_cache is True:
|
583 |
+
presents = presents + (outputs[1],)
|
584 |
+
if output_attentions:
|
585 |
+
all_attentions = all_attentions + (outputs[2 if use_cache else 1],)
|
586 |
+
|
587 |
+
if output_hidden_states:
|
588 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
589 |
+
|
590 |
+
# reverting data format change [s b h] --> [b s h]
|
591 |
+
output = hidden_states.transpose(0, 1).contiguous()
|
592 |
+
|
593 |
+
return output, presents, all_hidden_states, all_attentions
|
594 |
+
|
595 |
+
|
596 |
+
class YalmProjector(nn.Module):
|
597 |
+
def __init__(self, config: YalmConfig, dtype, device):
|
598 |
+
super().__init__()
|
599 |
+
|
600 |
+
self.embedding_size = config.embedding_size
|
601 |
+
self.hidden_size = config.hidden_size
|
602 |
+
self.apply_residual_connection_post_layernorm = (
|
603 |
+
config.apply_residual_connection_post_layernorm
|
604 |
+
)
|
605 |
+
|
606 |
+
if not self.apply_residual_connection_post_layernorm:
|
607 |
+
self.input_layernorm = nn.LayerNorm(
|
608 |
+
config.embedding_size, eps=config.layernorm_epsilon
|
609 |
+
)
|
610 |
+
|
611 |
+
if config.embedding_size != config.hidden_size:
|
612 |
+
self.register_buffer(
|
613 |
+
"projector",
|
614 |
+
torch.eye(
|
615 |
+
config.embedding_size,
|
616 |
+
config.hidden_size,
|
617 |
+
),
|
618 |
+
persistent=False,
|
619 |
+
)
|
620 |
+
|
621 |
+
def forward(self, data):
|
622 |
+
if self.apply_residual_connection_post_layernorm:
|
623 |
+
hidden_states = data
|
624 |
+
else:
|
625 |
+
hidden_states = self.input_layernorm(data)
|
626 |
+
|
627 |
+
if self.embedding_size != self.hidden_size:
|
628 |
+
hidden_states = hidden_states @ self.projector
|
629 |
+
|
630 |
+
return hidden_states
|
631 |
+
|
632 |
+
|
633 |
+
class YalmOutputLayer(nn.Module):
|
634 |
+
def __init__(self, config: YalmConfig) -> None:
|
635 |
+
super().__init__()
|
636 |
+
self.input_layer_norm = nn.LayerNorm(
|
637 |
+
config.hidden_size, eps=config.layernorm_epsilon
|
638 |
+
)
|
639 |
+
|
640 |
+
self.dense = nn.Linear(
|
641 |
+
config.hidden_size,
|
642 |
+
config.embedding_size,
|
643 |
+
)
|
644 |
+
|
645 |
+
self.activation = torch.nn.functional.gelu
|
646 |
+
|
647 |
+
self.output_layer_norm = nn.LayerNorm(
|
648 |
+
config.embedding_size,
|
649 |
+
eps=config.layernorm_epsilon,
|
650 |
+
)
|
651 |
+
|
652 |
+
def forward(self, input_data):
|
653 |
+
output = self.input_layer_norm(input_data)
|
654 |
+
output = self.dense(output)
|
655 |
+
output = self.activation(output)
|
656 |
+
output = self.output_layer_norm(output)
|
657 |
+
return output
|
658 |
+
|
659 |
+
|
660 |
+
YALM_START_DOCSTRING = r"""
|
661 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
662 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
663 |
+
etc.)
|
664 |
+
|
665 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
666 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
667 |
+
and behavior.
|
668 |
+
|
669 |
+
Parameters:
|
670 |
+
config ([`YalmConfig`]):
|
671 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
672 |
+
load the weights associated with the model, only the configuration. Check out the
|
673 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
674 |
+
"""
|
675 |
+
|
676 |
+
|
677 |
+
@add_start_docstrings(
|
678 |
+
"The bare Yalm Model outputting raw hidden-states without any specific head on top.",
|
679 |
+
YALM_START_DOCSTRING,
|
680 |
+
)
|
681 |
+
class YalmPreTrainedModel(PreTrainedModel):
|
682 |
+
config_class = YalmConfig
|
683 |
+
base_model_prefix = "yalm"
|
684 |
+
supports_gradient_checkpointing = True
|
685 |
+
_no_split_modules = ["YalmTransformerLayer"]
|
686 |
+
|
687 |
+
def _init_weights(self, module):
|
688 |
+
std = self.config.initializer_range
|
689 |
+
if isinstance(module, nn.Linear):
|
690 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
691 |
+
if module.bias is not None:
|
692 |
+
module.bias.data.zero_()
|
693 |
+
elif isinstance(module, nn.Embedding):
|
694 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
695 |
+
if module.padding_idx is not None:
|
696 |
+
module.weight.data[module.padding_idx].zero_()
|
697 |
+
|
698 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
699 |
+
if isinstance(module, YalmModel):
|
700 |
+
module.gradient_checkpointing = value
|
701 |
+
|
702 |
+
|
703 |
+
YALM_INPUTS_DOCSTRING = r"""
|
704 |
+
Args:
|
705 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
706 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
707 |
+
it.
|
708 |
+
|
709 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
710 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
711 |
+
|
712 |
+
[What are input IDs?](../glossary#input-ids)
|
713 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
714 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
715 |
+
|
716 |
+
- 1 for tokens that are **not masked**,
|
717 |
+
- 0 for tokens that are **masked**.
|
718 |
+
|
719 |
+
[What are attention masks?](../glossary#attention-mask)
|
720 |
+
|
721 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
722 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
723 |
+
|
724 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
725 |
+
`past_key_values`).
|
726 |
+
|
727 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
728 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
729 |
+
information on the default strategy.
|
730 |
+
|
731 |
+
- 1 indicates the head is **not masked**,
|
732 |
+
- 0 indicates the head is **masked**.
|
733 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
734 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
735 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
736 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
737 |
+
|
738 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
739 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
740 |
+
|
741 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
742 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
743 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
744 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
745 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
746 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
747 |
+
model's internal embedding lookup matrix.
|
748 |
+
use_cache (`bool`, *optional*):
|
749 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
750 |
+
`past_key_values`).
|
751 |
+
output_attentions (`bool`, *optional*):
|
752 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
753 |
+
tensors for more detail.
|
754 |
+
output_hidden_states (`bool`, *optional*):
|
755 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
756 |
+
more detail.
|
757 |
+
return_dict (`bool`, *optional*):
|
758 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
759 |
+
"""
|
760 |
+
|
761 |
+
|
762 |
+
@add_start_docstrings(
|
763 |
+
"The bare YaLM Model outputting raw hidden-states without any specific head on top.",
|
764 |
+
YALM_START_DOCSTRING,
|
765 |
+
)
|
766 |
+
class YalmModel(YalmPreTrainedModel):
|
767 |
+
"""
|
768 |
+
Transformer decoder consisting of *config.num_layers* layers. Each layer is a [`YalmDecoderLayer`]
|
769 |
+
|
770 |
+
Args:
|
771 |
+
config: YalmConfig
|
772 |
+
"""
|
773 |
+
|
774 |
+
def __init__(self, config: YalmConfig):
|
775 |
+
super().__init__(config)
|
776 |
+
self.padding_idx = config.pad_token_id
|
777 |
+
self.padded_vocab_size = config.padded_vocab_size
|
778 |
+
|
779 |
+
self.embed_tokens = nn.Embedding(
|
780 |
+
config.padded_vocab_size, config.embedding_size, self.padding_idx
|
781 |
+
)
|
782 |
+
self.projector = YalmProjector(
|
783 |
+
config, self.embed_tokens.weight.dtype, self.embed_tokens.weight.device
|
784 |
+
)
|
785 |
+
self.transformer = YalmTransformer(config)
|
786 |
+
self.output_layer = YalmOutputLayer(config)
|
787 |
+
|
788 |
+
self.gradient_checkpointing = False
|
789 |
+
|
790 |
+
# Initialize weights and apply final processing
|
791 |
+
self.post_init()
|
792 |
+
|
793 |
+
def get_input_embeddings(self):
|
794 |
+
return self.embed_tokens
|
795 |
+
|
796 |
+
def set_input_embeddings(self, value):
|
797 |
+
self.embed_tokens = value
|
798 |
+
|
799 |
+
def _prepare_decoder_attention_mask(
|
800 |
+
self, attention_mask, input_shape, inputs_embeds, past_key_values_length
|
801 |
+
):
|
802 |
+
# create causal mask
|
803 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
804 |
+
combined_attention_mask = None
|
805 |
+
if input_shape[-1] > 1:
|
806 |
+
combined_attention_mask = _make_causal_mask(
|
807 |
+
input_shape,
|
808 |
+
inputs_embeds.dtype,
|
809 |
+
device=inputs_embeds.device,
|
810 |
+
past_key_values_length=past_key_values_length,
|
811 |
+
)
|
812 |
+
|
813 |
+
if attention_mask is not None:
|
814 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
815 |
+
expanded_attn_mask = _expand_mask(
|
816 |
+
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
|
817 |
+
).to(inputs_embeds.device)
|
818 |
+
combined_attention_mask = (
|
819 |
+
expanded_attn_mask
|
820 |
+
if combined_attention_mask is None
|
821 |
+
else expanded_attn_mask + combined_attention_mask
|
822 |
+
)
|
823 |
+
|
824 |
+
return combined_attention_mask
|
825 |
+
|
826 |
+
@add_start_docstrings_to_model_forward(YALM_INPUTS_DOCSTRING)
|
827 |
+
def forward(
|
828 |
+
self,
|
829 |
+
input_ids: Optional[torch.LongTensor] = None,
|
830 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
831 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
832 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
833 |
+
use_cache: Optional[bool] = None,
|
834 |
+
output_attentions: Optional[bool] = None,
|
835 |
+
output_hidden_states: Optional[bool] = None,
|
836 |
+
return_dict: Optional[bool] = None,
|
837 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
838 |
+
output_attentions = (
|
839 |
+
output_attentions
|
840 |
+
if output_attentions is not None
|
841 |
+
else self.config.output_attentions
|
842 |
+
)
|
843 |
+
output_hidden_states = (
|
844 |
+
output_hidden_states
|
845 |
+
if output_hidden_states is not None
|
846 |
+
else self.config.output_hidden_states
|
847 |
+
)
|
848 |
+
return_dict = (
|
849 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
850 |
+
)
|
851 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
852 |
+
|
853 |
+
if input_ids is not None and inputs_embeds is not None:
|
854 |
+
raise ValueError(
|
855 |
+
"You cannot specify both input_ids and inputs_embeds at the same time"
|
856 |
+
)
|
857 |
+
elif input_ids is not None:
|
858 |
+
input_shape = input_ids.size()
|
859 |
+
elif inputs_embeds is not None:
|
860 |
+
input_shape = inputs_embeds.size()[:-1]
|
861 |
+
else:
|
862 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
863 |
+
|
864 |
+
batch_size, seq_length = input_shape
|
865 |
+
|
866 |
+
if inputs_embeds is None:
|
867 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
868 |
+
|
869 |
+
seq_length_with_past = seq_length
|
870 |
+
past_key_values_length = 0
|
871 |
+
|
872 |
+
if past_key_values is not None:
|
873 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
874 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
875 |
+
else:
|
876 |
+
past_key_values = tuple(None for _ in range(self.config.num_layers))
|
877 |
+
if attention_mask is None:
|
878 |
+
attention_mask = torch.ones(
|
879 |
+
(batch_size, seq_length_with_past),
|
880 |
+
dtype=torch.bool,
|
881 |
+
device=inputs_embeds.device,
|
882 |
+
)
|
883 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
884 |
+
attention_mask,
|
885 |
+
(batch_size, seq_length),
|
886 |
+
inputs_embeds,
|
887 |
+
past_key_values_length,
|
888 |
+
)
|
889 |
+
|
890 |
+
hidden_states = self.projector(inputs_embeds)
|
891 |
+
|
892 |
+
hidden_states, presents, all_hidden_states, all_attentions = self.transformer(
|
893 |
+
hidden_states,
|
894 |
+
attention_mask=attention_mask,
|
895 |
+
past_key_values=past_key_values,
|
896 |
+
use_cache=use_cache,
|
897 |
+
output_attentions=output_attentions,
|
898 |
+
output_hidden_states=output_hidden_states,
|
899 |
+
gradient_checkpointing=self.gradient_checkpointing,
|
900 |
+
)
|
901 |
+
last_hidden_states = self.output_layer(hidden_states)
|
902 |
+
if output_hidden_states:
|
903 |
+
all_hidden_states = all_hidden_states + (last_hidden_states,)
|
904 |
+
|
905 |
+
if not return_dict:
|
906 |
+
return tuple(
|
907 |
+
v
|
908 |
+
for v in [
|
909 |
+
last_hidden_states,
|
910 |
+
presents,
|
911 |
+
all_hidden_states,
|
912 |
+
all_attentions,
|
913 |
+
]
|
914 |
+
if v is not None
|
915 |
+
)
|
916 |
+
|
917 |
+
return BaseModelOutputWithPast(
|
918 |
+
last_hidden_state=last_hidden_states,
|
919 |
+
past_key_values=presents,
|
920 |
+
hidden_states=all_hidden_states,
|
921 |
+
attentions=all_attentions,
|
922 |
+
)
|
923 |
+
|
924 |
+
|
925 |
+
@add_start_docstrings(
|
926 |
+
"""
|
927 |
+
YaLM Model with a `language modeling` head on top (linear layer with weights tied to the input
|
928 |
+
embeddings).
|
929 |
+
""",
|
930 |
+
YALM_START_DOCSTRING,
|
931 |
+
)
|
932 |
+
class YalmForCausalLM(YalmPreTrainedModel):
|
933 |
+
_tied_weights_keys = [r"yalm.embed_tokens.weight", r"lm_head.weight"]
|
934 |
+
|
935 |
+
def __init__(self, config: YalmConfig):
|
936 |
+
super().__init__(config)
|
937 |
+
|
938 |
+
self.yalm = YalmModel(config)
|
939 |
+
self.lm_head = nn.Linear(
|
940 |
+
config.embedding_size, config.padded_vocab_size, bias=False
|
941 |
+
)
|
942 |
+
self.out_bias = torch.nn.Parameter(
|
943 |
+
torch.zeros(
|
944 |
+
config.padded_vocab_size,
|
945 |
+
)
|
946 |
+
)
|
947 |
+
|
948 |
+
# Initialize weights and apply final processing
|
949 |
+
self.post_init()
|
950 |
+
|
951 |
+
def get_output_embeddings(self):
|
952 |
+
return self.lm_head
|
953 |
+
|
954 |
+
def set_output_embeddings(self, new_embeddings):
|
955 |
+
self.lm_head = new_embeddings
|
956 |
+
|
957 |
+
@add_start_docstrings_to_model_forward(
|
958 |
+
YALM_INPUTS_DOCSTRING.format("batch_size, sequence_length")
|
959 |
+
)
|
960 |
+
@replace_return_docstrings(
|
961 |
+
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
962 |
+
)
|
963 |
+
def forward(
|
964 |
+
self,
|
965 |
+
input_ids: Optional[torch.LongTensor] = None,
|
966 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
967 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
968 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
969 |
+
labels: Optional[torch.LongTensor] = None,
|
970 |
+
use_cache: Optional[bool] = None,
|
971 |
+
output_attentions: Optional[bool] = None,
|
972 |
+
output_hidden_states: Optional[bool] = None,
|
973 |
+
return_dict: Optional[bool] = None,
|
974 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
975 |
+
r"""
|
976 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
977 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
978 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
979 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional tensors are
|
980 |
+
only required when the model is used as a decoder in a Sequence to Sequence model.
|
981 |
+
|
982 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks that can be used (see
|
983 |
+
`past_key_values` input) to speed up sequential decoding.
|
984 |
+
|
985 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
986 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
987 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
988 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
989 |
+
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
990 |
+
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
|
991 |
+
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`.
|
992 |
+
use_cache (`bool`, *optional*):
|
993 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
994 |
+
`past_key_values`).
|
995 |
+
|
996 |
+
Returns:
|
997 |
+
|
998 |
+
Example:
|
999 |
+
|
1000 |
+
```python
|
1001 |
+
>>> from transformers import AutoTokenizer, YalmForCausalLM, YalmConfig
|
1002 |
+
>>> import torch
|
1003 |
+
|
1004 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("TODO")
|
1005 |
+
>>> config = YalmConfig.from_pretrained("TODO")
|
1006 |
+
>>> config.is_decoder = True
|
1007 |
+
>>> model = YalmForCausalLM.from_pretrained("TODO", config=config)
|
1008 |
+
|
1009 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
1010 |
+
>>> outputs = model(**inputs)
|
1011 |
+
|
1012 |
+
>>> prediction_logits = outputs.logits
|
1013 |
+
```"""
|
1014 |
+
return_dict = (
|
1015 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1016 |
+
)
|
1017 |
+
|
1018 |
+
outputs = self.yalm(
|
1019 |
+
input_ids,
|
1020 |
+
attention_mask=attention_mask,
|
1021 |
+
inputs_embeds=inputs_embeds,
|
1022 |
+
past_key_values=past_key_values,
|
1023 |
+
use_cache=use_cache,
|
1024 |
+
output_attentions=output_attentions,
|
1025 |
+
output_hidden_states=output_hidden_states,
|
1026 |
+
return_dict=return_dict,
|
1027 |
+
)
|
1028 |
+
|
1029 |
+
hidden_states = outputs[0]
|
1030 |
+
lm_logits = self.lm_head(hidden_states) + self.out_bias
|
1031 |
+
|
1032 |
+
lm_loss = None
|
1033 |
+
if labels is not None:
|
1034 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
1035 |
+
shift_logits = lm_logits[:, :-1, :].contiguous()
|
1036 |
+
labels = labels[:, 1:].contiguous()
|
1037 |
+
loss_fct = CrossEntropyLoss()
|
1038 |
+
lm_loss = loss_fct(
|
1039 |
+
shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1)
|
1040 |
+
)
|
1041 |
+
|
1042 |
+
if not return_dict:
|
1043 |
+
output = (lm_logits,) + outputs[1:]
|
1044 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
1045 |
+
|
1046 |
+
return CausalLMOutputWithPast(
|
1047 |
+
loss=lm_loss,
|
1048 |
+
logits=lm_logits,
|
1049 |
+
past_key_values=outputs.past_key_values,
|
1050 |
+
hidden_states=outputs.hidden_states,
|
1051 |
+
attentions=outputs.attentions,
|
1052 |
+
)
|
1053 |
+
|
1054 |
+
def prepare_inputs_for_generation(
|
1055 |
+
self, input_ids, past_key_values=None, attention_mask=None, **kwargs
|
1056 |
+
):
|
1057 |
+
input_shape = input_ids.shape
|
1058 |
+
|
1059 |
+
# cut decoder_input_ids if past is used
|
1060 |
+
if past_key_values and past_key_values[0] is not None:
|
1061 |
+
input_ids = input_ids[:, -1:]
|
1062 |
+
|
1063 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
1064 |
+
if attention_mask is None:
|
1065 |
+
attention_mask = input_ids.new_ones(input_shape)
|
1066 |
+
|
1067 |
+
return {
|
1068 |
+
"input_ids": input_ids,
|
1069 |
+
"attention_mask": attention_mask,
|
1070 |
+
"past_key_values": past_key_values,
|
1071 |
+
}
|
1072 |
+
|
1073 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
1074 |
+
reordered_past = ()
|
1075 |
+
for layer_past in past_key_values:
|
1076 |
+
reordered_past += (
|
1077 |
+
tuple(
|
1078 |
+
past_state.index_select(0, beam_idx)
|
1079 |
+
for past_state in layer_past[:2]
|
1080 |
+
)
|
1081 |
+
+ layer_past[2:],
|
1082 |
+
)
|
1083 |
+
return reordered_past
|
spiece.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e63c3d3f3883978bc756b8d8d75183923e17fc90fa76c61bcafa0ddb5dcc2b4
|
3 |
+
size 2815034
|
tokenization_yalm.py
ADDED
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 T5 Authors and HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Tokenization class for model T5."""
|
16 |
+
|
17 |
+
|
18 |
+
from typing import TYPE_CHECKING, Any, Dict, List, Optional
|
19 |
+
|
20 |
+
import numpy as np
|
21 |
+
import sentencepiece as spm
|
22 |
+
import six
|
23 |
+
from transformers.convert_slow_tokenizer import import_protobuf
|
24 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
25 |
+
|
26 |
+
if TYPE_CHECKING:
|
27 |
+
from transformers.tokenization_utils_base import TextInput
|
28 |
+
|
29 |
+
from transformers.utils import logging
|
30 |
+
|
31 |
+
logger = logging.get_logger(__name__)
|
32 |
+
|
33 |
+
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
|
34 |
+
|
35 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
36 |
+
"vocab_file": {
|
37 |
+
"t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model",
|
38 |
+
"t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model",
|
39 |
+
"t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model",
|
40 |
+
"t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model",
|
41 |
+
"t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model",
|
42 |
+
}
|
43 |
+
}
|
44 |
+
|
45 |
+
|
46 |
+
# TODO(PVP) - this should be removed in Transformers v5
|
47 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
48 |
+
"t5-small": 512,
|
49 |
+
"t5-base": 512,
|
50 |
+
"t5-large": 512,
|
51 |
+
"t5-3b": 512,
|
52 |
+
"t5-11b": 512,
|
53 |
+
}
|
54 |
+
|
55 |
+
|
56 |
+
def convert_to_unicode(text):
|
57 |
+
"""Converts `text` to Unicode (if it's not already), assuming utf-8 input."""
|
58 |
+
return six.ensure_text(text, errors="ignore")
|
59 |
+
|
60 |
+
|
61 |
+
class YalmTokenizer(PreTrainedTokenizer):
|
62 |
+
"""
|
63 |
+
Construct a YaLM tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
|
64 |
+
|
65 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
66 |
+
this superclass for more information regarding those methods.
|
67 |
+
|
68 |
+
Args:
|
69 |
+
vocab_file (`str`):
|
70 |
+
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
|
71 |
+
contains the vocabulary necessary to instantiate a tokenizer.
|
72 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
73 |
+
The end of sequence token.
|
74 |
+
|
75 |
+
<Tip>
|
76 |
+
|
77 |
+
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
78 |
+
The token used is the `sep_token`.
|
79 |
+
|
80 |
+
</Tip>
|
81 |
+
|
82 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
83 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
84 |
+
token instead.
|
85 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
86 |
+
The token used for padding, for example when batching sequences of different lengths.
|
87 |
+
extra_ids (`int`, *optional*, defaults to 100):
|
88 |
+
Add a number of extra ids added to the vocabulary for use as sentinels. These tokens are
|
89 |
+
accessible as "<extra_id_{%d}>" where "{%d}" is a number between 0 and extra_ids-1. These tokens can be
|
90 |
+
retrieved by calling get_sentinel_tokens method and token ids can be by calling get_sentinel_token_ids
|
91 |
+
method
|
92 |
+
additional_special_tokens (`List[str]`, *optional*):
|
93 |
+
Additional special tokens used by the tokenizer.
|
94 |
+
sp_model_kwargs (`dict`, *optional*):
|
95 |
+
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
96 |
+
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
97 |
+
to set:
|
98 |
+
|
99 |
+
- `enable_sampling`: Enable subword regularization.
|
100 |
+
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
101 |
+
|
102 |
+
- `nbest_size = {0,1}`: No sampling is performed.
|
103 |
+
- `nbest_size > 1`: samples from the nbest_size results.
|
104 |
+
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
105 |
+
using forward-filtering-and-backward-sampling algorithm.
|
106 |
+
|
107 |
+
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
108 |
+
BPE-dropout.
|
109 |
+
|
110 |
+
Attributes:
|
111 |
+
sp_model (`SentencePieceProcessor`):
|
112 |
+
The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
|
113 |
+
"""
|
114 |
+
|
115 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
116 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
117 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
118 |
+
model_input_names = ["input_ids", "attention_mask"]
|
119 |
+
SPIECE_UNDERLINE = r"▁"
|
120 |
+
|
121 |
+
def __init__(
|
122 |
+
self,
|
123 |
+
vocab_file,
|
124 |
+
bos_token="<s>",
|
125 |
+
eos_token="</s>",
|
126 |
+
unk_token="<unk>",
|
127 |
+
mask_token="[MASK]",
|
128 |
+
pad_token=None,
|
129 |
+
additional_special_tokens=None,
|
130 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
131 |
+
add_bos_token=True,
|
132 |
+
add_eos_token=False,
|
133 |
+
**kwargs,
|
134 |
+
) -> None:
|
135 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
136 |
+
bos_token = (
|
137 |
+
AddedToken(bos_token, lstrip=False, rstrip=False)
|
138 |
+
if isinstance(bos_token, str)
|
139 |
+
else bos_token
|
140 |
+
)
|
141 |
+
eos_token = (
|
142 |
+
AddedToken(eos_token, lstrip=False, rstrip=False)
|
143 |
+
if isinstance(eos_token, str)
|
144 |
+
else eos_token
|
145 |
+
)
|
146 |
+
unk_token = (
|
147 |
+
AddedToken(unk_token, lstrip=False, rstrip=False)
|
148 |
+
if isinstance(unk_token, str)
|
149 |
+
else unk_token
|
150 |
+
)
|
151 |
+
pad_token = (
|
152 |
+
AddedToken(pad_token, lstrip=False, rstrip=False)
|
153 |
+
if isinstance(pad_token, str)
|
154 |
+
else pad_token
|
155 |
+
)
|
156 |
+
super().__init__(
|
157 |
+
bos_token=bos_token,
|
158 |
+
eos_token=eos_token,
|
159 |
+
unk_token=unk_token,
|
160 |
+
pad_token=pad_token,
|
161 |
+
add_bos_token=add_bos_token,
|
162 |
+
add_eos_token=add_eos_token,
|
163 |
+
mask_token=mask_token,
|
164 |
+
additional_special_tokens=additional_special_tokens,
|
165 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
166 |
+
legacy=False,
|
167 |
+
**kwargs,
|
168 |
+
)
|
169 |
+
|
170 |
+
self.vocab_file = vocab_file
|
171 |
+
self.sp_model = self.get_spm_processor()
|
172 |
+
self._vocab_words = self._get_vocab_words()
|
173 |
+
self.encoder = {token: idx for idx, token in enumerate(self._vocab_words)}
|
174 |
+
self.decoder = {idx: token for idx, token in enumerate(self._vocab_words)}
|
175 |
+
|
176 |
+
def get_spm_processor(self):
|
177 |
+
tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
178 |
+
|
179 |
+
with open(self.vocab_file, "rb") as f:
|
180 |
+
sp_model = f.read()
|
181 |
+
model_pb2 = import_protobuf()
|
182 |
+
model = model_pb2.ModelProto.FromString(sp_model)
|
183 |
+
normalizer_spec = model_pb2.NormalizerSpec()
|
184 |
+
normalizer_spec.add_dummy_prefix = False
|
185 |
+
model.normalizer_spec.MergeFrom(normalizer_spec)
|
186 |
+
sp_model = model.SerializeToString()
|
187 |
+
tokenizer.LoadFromSerializedProto(sp_model)
|
188 |
+
return tokenizer
|
189 |
+
|
190 |
+
@property
|
191 |
+
def vocab_size(self):
|
192 |
+
return self.sp_model.get_piece_size()
|
193 |
+
|
194 |
+
def get_vocab(self):
|
195 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
196 |
+
vocab.update(self.added_tokens_encoder)
|
197 |
+
return vocab
|
198 |
+
|
199 |
+
def __getstate__(self):
|
200 |
+
state = self.__dict__.copy()
|
201 |
+
state["sp_model"] = None
|
202 |
+
return state
|
203 |
+
|
204 |
+
def __setstate__(self, d):
|
205 |
+
self.__dict__ = d
|
206 |
+
|
207 |
+
# for backward compatibility
|
208 |
+
if not hasattr(self, "sp_model_kwargs"):
|
209 |
+
self.sp_model_kwargs = {}
|
210 |
+
|
211 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
212 |
+
self.sp_model.Load(self.vocab_file)
|
213 |
+
|
214 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.tokenize
|
215 |
+
def tokenize(
|
216 |
+
self, text: "TextInput", add_special_tokens=False, **kwargs
|
217 |
+
) -> List[str]:
|
218 |
+
"""
|
219 |
+
Converts a string to a list of tokens.
|
220 |
+
"""
|
221 |
+
text = convert_to_unicode(text)
|
222 |
+
text = text.replace("\n", "[NL]")
|
223 |
+
return [self.bos_token] + self.sp_model.encode(
|
224 |
+
YalmTokenizer.SPIECE_UNDERLINE + text, out_type=str
|
225 |
+
)
|
226 |
+
|
227 |
+
def decode(
|
228 |
+
self,
|
229 |
+
token_ids,
|
230 |
+
**kwargs,
|
231 |
+
) -> str:
|
232 |
+
tokens = [self.decoder[idx] for idx in token_ids]
|
233 |
+
text = (
|
234 |
+
"".join(tokens)
|
235 |
+
.replace("\u2581", " ")
|
236 |
+
.replace(self.eos_token, "")
|
237 |
+
.lstrip()
|
238 |
+
.replace("[NL]", "\n")
|
239 |
+
)
|
240 |
+
return text
|
241 |
+
|
242 |
+
def _convert_token_to_id(self, token):
|
243 |
+
return self.sp_model.piece_to_id(token)
|
244 |
+
|
245 |
+
def _convert_id_to_token(self, index: int) -> str:
|
246 |
+
return self.decoder[index]
|
247 |
+
|
248 |
+
def _get_vocab_words(self):
|
249 |
+
indices = list(range(self.sp_model.GetPieceSize()))
|
250 |
+
return self.sp_model.id_to_piece(indices)
|