distilgpt2-finetuned-wellness

This model is a fine-tuned version of distilgpt2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6526

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
3.0101 1.0 158 2.1220
2.0886 2.0 316 1.9541
1.9941 3.0 474 1.8785
1.8701 4.0 632 1.8243
1.8238 5.0 790 1.7894
1.743 6.0 948 1.7593
1.699 7.0 1106 1.7376
1.6606 8.0 1264 1.7188
1.6345 9.0 1422 1.7027
1.6208 10.0 1580 1.6914
1.5896 11.0 1738 1.6830
1.5694 12.0 1896 1.6722
1.5468 13.0 2054 1.6671
1.5311 14.0 2212 1.6663
1.5172 15.0 2370 1.6602
1.51 16.0 2528 1.6544
1.4916 17.0 2686 1.6555
1.4782 18.0 2844 1.6529
1.4829 19.0 3002 1.6532
1.4639 20.0 3160 1.6526

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.1+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
16
Safetensors
Model size
81.9M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Binodt/distilgpt2-finetuned-wellness

Finetuned
(582)
this model