We introduced a new model designed for the Code generation task. Its test accuracy on the HumanEval base dataset surpasses that of GPT-4 Turbo (April 2024). (90.9% vs 90.2%).

Additionally, compared to previous open-source models, AutoCoder offers a new feature: it can automatically install the required packages and attempt to run the code until it deems there are no issues, whenever the user wishes to execute the code.

Its base model is deepseeker-coder.

See details on the AutoCoder GitHub.

Simple test script:

from transformers import AutoTokenizer, AutoModelForCausalLM
from datasets import load_dataset

model_path = ""
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, 
                                             device_map="auto")

HumanEval = load_dataset("evalplus/humanevalplus")

Input = "" # input your question here
 
messages=[
    { 'role': 'user', 'content': Input}
]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, 
                                        return_tensors="pt").to(model.device)

outputs = model.generate(inputs, 
                        max_new_tokens=1024, 
                        do_sample=False, 
                        temperature=0.0,
                        top_p=1.0, 
                        num_return_sequences=1, 
                        eos_token_id=tokenizer.eos_token_id)

answer = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)

Paper: https://arxiv.org/abs/2405.14906

Downloads last month
295
Safetensors
Model size
33.3B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Bin12345/AutoCoder

Quantizations
5 models

Spaces using Bin12345/AutoCoder 4