RS-LLaVA: Large Vision Language Model for Joint Captioning and Question Answering in Remote Sensing Imagery
- Repository: https://github.com/BigData-KSU/RS-LLaVA
- Paper: https://www.mdpi.com/2072-4292/16/9/1477
- Demo: Soon.
How to Get Started with the Model
Install
- Clone this repository and navigate to RS-LLaVA folder
git clone https://github.com/BigData-KSU/RS-LLaVA.git
cd RS-LLaVA
- Install Package
conda create -n rs-llava python=3.10 -y
conda activate rs-llava
pip install --upgrade pip # enable PEP 660 support
- Install additional packages
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
pip install transformers==4.35
pip install einops
pip inastall SentencePiece
pip install accelerate
pip install peft
Inference
Use the code below to get started with the model.
import torch
import os
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init
from llava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
from PIL import Image
import math
######## model here.................
model_path = 'BigData-KSU/RS-llava-v1.5-7b-LoRA'
model_base = 'Intel/neural-chat-7b-v3-3'
#### Further instrcutions here..........
conv_mode = 'llava_v1'
disable_torch_init()
model_name = get_model_name_from_path(model_path)
print('model name', model_name)
print('model base', model_base)
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, model_base, model_name)
def chat_with_RS_LLaVA(cur_prompt,image_name):
# Prepare the input text, adding image-related tokens if needed
image_mem = Image.open(image_name)
image_tensor = image_processor.preprocess(image_mem, return_tensors='pt')['pixel_values'][0]
if model.config.mm_use_im_start_end:
cur_prompt = f"{DEFAULT_IM_START_TOKEN} {DEFAULT_IMAGE_TOKEN} {DEFAULT_IM_END_TOKEN}\n{cur_prompt}"
else:
cur_prompt = f"{DEFAULT_IMAGE_TOKEN}\n{cur_prompt}"
# Create a copy of the conversation template
conv = conv_templates[conv_mode].copy()
conv.append_message(conv.roles[0], cur_prompt)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
# Process image inputs if provided
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0) .cuda()
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=image_tensor.unsqueeze(0).half().cuda(),
do_sample=True,
temperature=0.2,
top_p=None,
num_beams=1,
no_repeat_ngram_size=3,
max_new_tokens=2048,
use_cache=True)
input_token_len = input_ids.shape[1]
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
if n_diff_input_output > 0:
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
outputs = outputs.strip()
return outputs
if __name__ == "__main__":
print('Model input...............')
cur_prompt='Generate three questions and answers about the content of this image. Then, compile a summary.'
image_name='assets/example_images/parking_lot_010.jpg'
outputs=chat_with_RS_LLaVA(cur_prompt,image_name)
print('Model Response.....')
print(outputs)
Training Details
Training RS-LLaVa is carried out in three stages:
Stage 1: Pretraining (Feature alignment) stage:
Using LAION/CC/SBU BLIP-Caption Concept-balanced 558K dataset, and two RS datasets, NWPU and RSICD.
Stage 2: Visual Instruction Tuning:
To teach the model to follow instructions, we used the proposed RS-Instructions Dataset plus LLaVA-Instruct-150K dataset.
Stage 3: Downstram Task Tuning:
In this stage, the model is fine-tuned on one of the downstream tasks (e.g., RS image captioning or VQA)
Citation
BibTeX:
@Article{rs16091477,
AUTHOR = {Bazi, Yakoub and Bashmal, Laila and Al Rahhal, Mohamad Mahmoud and Ricci, Riccardo and Melgani, Farid},
TITLE = {RS-LLaVA: A Large Vision-Language Model for Joint Captioning and Question Answering in Remote Sensing Imagery},
JOURNAL = {Remote Sensing},
VOLUME = {16},
YEAR = {2024},
NUMBER = {9},
ARTICLE-NUMBER = {1477},
URL = {https://www.mdpi.com/2072-4292/16/9/1477},
ISSN = {2072-4292},
DOI = {10.3390/rs16091477}
}
- Downloads last month
- 174
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.