File size: 4,027 Bytes
9d5b280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from unittest.mock import MagicMock, patch

import pytest

from lm_eval.models.openai_completions import LocalCompletionsAPI


@pytest.fixture
def api():
    return LocalCompletionsAPI(
        base_url="http://test-url.com", tokenizer_backend=None, model="gpt-3.5-turbo"
    )


@pytest.fixture
def api_tokenized():
    return LocalCompletionsAPI(
        base_url="http://test-url.com",
        model="EleutherAI/pythia-1b",
        tokenizer_backend="huggingface",
    )


def test_create_payload_generate(api):
    messages = ["Generate a story"]
    gen_kwargs = {
        "max_tokens": 100,
        "temperature": 0.7,
        "until": ["The End"],
        "do_sample": True,
        "seed": 1234,
    }
    payload = api._create_payload(messages, generate=True, gen_kwargs=gen_kwargs)

    assert payload == {
        "prompt": ["Generate a story"],
        "model": "gpt-3.5-turbo",
        "max_tokens": 100,
        "temperature": 0.7,
        "stop": ["The End"],
        "seed": 1234,
    }


def test_create_payload_loglikelihood(api):
    messages = ["The capital of France is"]
    payload = api._create_payload(messages, generate=False, gen_kwargs=None)

    assert payload == {
        "model": "gpt-3.5-turbo",
        "prompt": ["The capital of France is"],
        "max_tokens": 1,
        "logprobs": 1,
        "echo": True,
        "temperature": 0,
        "seed": 1234,
    }


@pytest.mark.parametrize(
    "input_messages, generate, gen_kwargs, expected_payload",
    [
        (
            ["Hello, how are"],
            True,
            {"max_gen_toks": 100, "temperature": 0.7, "until": ["hi"]},
            {
                "prompt": "Hello, how are",
                "model": "gpt-3.5-turbo",
                "max_tokens": 100,
                "temperature": 0.7,
                "stop": ["hi"],
                "seed": 1234,
            },
        ),
        (
            ["Hello, how are", "you"],
            True,
            {},
            {
                "prompt": "Hello, how are",
                "model": "gpt-3.5-turbo",
                "max_tokens": 256,
                "temperature": 0,
                "stop": [],
                "seed": 1234,
            },
        ),
    ],
)
def test_model_generate_call_usage(
    api, input_messages, generate, gen_kwargs, expected_payload
):
    with patch("requests.post") as mock_post:
        mock_response = MagicMock()
        mock_response.json.return_value = {"result": "success"}
        mock_post.return_value = mock_response

        # Act
        result = api.model_call(
            input_messages, generate=generate, gen_kwargs=gen_kwargs
        )

        # Assert
        mock_post.assert_called_once()
        _, kwargs = mock_post.call_args
        assert "json" in kwargs
        assert kwargs["json"] == expected_payload
        assert result == {"result": "success"}


@pytest.mark.parametrize(
    "input_messages, generate, gen_kwargs, expected_payload",
    [
        (
            [[1, 2, 3, 4, 5]],
            False,
            None,
            {
                "model": "EleutherAI/pythia-1b",
                "prompt": [[1, 2, 3, 4, 5]],
                "max_tokens": 1,
                "logprobs": 1,
                "echo": True,
                "seed": 1234,
                "temperature": 0,
            },
        ),
    ],
)
def test_model_tokenized_call_usage(
    api_tokenized, input_messages, generate, gen_kwargs, expected_payload
):
    with patch("requests.post") as mock_post:
        mock_response = MagicMock()
        mock_response.json.return_value = {"result": "success"}
        mock_post.return_value = mock_response

        # Act
        result = api_tokenized.model_call(
            input_messages, generate=generate, gen_kwargs=gen_kwargs
        )

        # Assert
        mock_post.assert_called_once()
        _, kwargs = mock_post.call_args
        assert "json" in kwargs
        assert kwargs["json"] == expected_payload
        assert result == {"result": "success"}