Edit model card

LayoutLMv3_97_1

This model is a fine-tuned version of microsoft/layoutlmv3-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8446
  • Precision: 0.5939
  • Recall: 0.8376
  • F1: 0.6950
  • Accuracy: 0.8952

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 2.44 100 0.4463 0.4830 0.7265 0.5802 0.8599
No log 4.88 200 0.4064 0.5924 0.7949 0.6788 0.8884
No log 7.32 300 0.4774 0.5813 0.7949 0.6715 0.8907
No log 9.76 400 0.5800 0.6013 0.7863 0.6815 0.8907
0.2076 12.2 500 0.6426 0.6209 0.8120 0.7037 0.8952
0.2076 14.63 600 0.6872 0.5939 0.8376 0.6950 0.8907
0.2076 17.07 700 0.7801 0.5915 0.8291 0.6904 0.8918
0.2076 19.51 800 0.7865 0.5890 0.8205 0.6857 0.8895
0.2076 21.95 900 0.8533 0.5854 0.8205 0.6833 0.8895
0.0109 24.39 1000 0.7738 0.5864 0.8120 0.6810 0.8941
0.0109 26.83 1100 0.8297 0.5854 0.8205 0.6833 0.8872
0.0109 29.27 1200 0.7690 0.6062 0.8291 0.7004 0.8975
0.0109 31.71 1300 0.8629 0.5904 0.8376 0.6926 0.8895
0.0109 34.15 1400 0.8104 0.5976 0.8376 0.6975 0.8941
0.0027 36.59 1500 0.7864 0.5926 0.8205 0.6882 0.8929
0.0027 39.02 1600 0.8002 0.6037 0.8462 0.7046 0.8986
0.0027 41.46 1700 0.8049 0.5964 0.8462 0.6996 0.8964
0.0027 43.9 1800 0.8355 0.5939 0.8376 0.6950 0.8952
0.0027 46.34 1900 0.8402 0.5939 0.8376 0.6950 0.8952
0.001 48.78 2000 0.8446 0.5939 0.8376 0.6950 0.8952

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.