Edit model card

LayoutLM_1

This model is a fine-tuned version of microsoft/layoutlmv3-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4204
  • Precision: 0.6552
  • Recall: 0.7480
  • F1: 0.6985
  • Accuracy: 0.9071

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 3.7 100 0.6185 0.0 0.0 0.0 0.8310
No log 7.41 200 0.4585 0.6146 0.4646 0.5291 0.8839
No log 11.11 300 0.4020 0.5870 0.6378 0.6113 0.8929
No log 14.81 400 0.3775 0.6496 0.7008 0.6742 0.9006
0.4776 18.52 500 0.3826 0.6268 0.7008 0.6617 0.9019
0.4776 22.22 600 0.3864 0.6224 0.7008 0.6593 0.8981
0.4776 25.93 700 0.4307 0.5759 0.7165 0.6386 0.8916
0.4776 29.63 800 0.4205 0.6738 0.7480 0.7090 0.9123
0.4776 33.33 900 0.4176 0.6552 0.7480 0.6985 0.9084
0.0536 37.04 1000 0.4204 0.6552 0.7480 0.6985 0.9071

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.