Edit model card

Model Card for mdeberta-v3-base-triplet-critic-xnli

This is the Triplit Critic model presented in the ACL 2023 paper RED^{FM}: a Filtered and Multilingual Relation Extraction Dataset. If you use the model, please reference this work in your paper:

@inproceedings{huguet-cabot-et-al-2023-redfm-dataset,
    title = "RED$^{\rm FM}$: a Filtered and Multilingual Relation Extraction Dataset",
    author = "Huguet Cabot, Pere-Llu{\'\i}s  and Tedeschi, Simone and Ngonga Ngomo, Axel-Cyrille and
      Navigli, Roberto",
    booktitle = "Proc. of the 61st Annual Meeting of the Association for Computational Linguistics: ACL 2023",
    month = jul,
    year = "2023",
    address = "Toronto, Canada",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/2306.09802",
}

The Triplit Critic is based on mdeberta-v3-base and it was trained as a multitask system to filter triplets as well as on the XNLI dataset. The model weights contain the two classification heads, however loading it using the huggingface library will only load those for Triplet filtering (ie. a binary classification head), if one wants to use it for XNLI it needs a custom script. While it is defined and trained as a classification system, we use the positive score (ie. Label_1) as the confidence score for a triplet. For SREDFM the confidence score thresshold was set at 0.75.

To load the multitask model:

from transformers import DebertaV2PreTrainedModel, DebertaV2Model
from torch import nn
from transformers.models.deberta_v2.modeling_deberta_v2 import *
from transformers.file_utils import ModelOutput

@dataclass
class TXNLIClassifierOutput(ModelOutput):
    """
    Base class for outputs of sentence classification models.

    Args:
        loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
            Classification (or regression if config.num_labels==1) loss.
        logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`):
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        logits_xnli (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`):
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
            sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    logits_xnli: torch.FloatTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None

class DebertaV2ForTripletClassification(DebertaV2PreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        num_labels = getattr(config, "num_labels", 2)
        self.num_labels = num_labels

        self.deberta = DebertaV2Model(config)
        self.pooler = ContextPooler(config)
        output_dim = self.pooler.output_dim

        self.classifier = nn.Linear(output_dim, num_labels)
        drop_out = getattr(config, "cls_dropout", None)
        drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
        self.dropout = StableDropout(drop_out)
        self.classifier_xnli = nn.Linear(output_dim, 3)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.deberta.get_input_embeddings()

    def set_input_embeddings(self, new_embeddings):
        self.deberta.set_input_embeddings(new_embeddings)

    @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        inputs_embeds=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss),
            If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.deberta(
            input_ids,
            token_type_ids=token_type_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        encoder_layer = outputs[0]
        pooled_output = self.pooler(encoder_layer)
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
        logits_xnli = self.classifier_xnli(pooled_output)

        loss = None
        if labels is not None:
            if labels.dtype != torch.bool:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            else:
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits_xnli.view(-1, 3), labels.view(-1).long())
        if not return_dict:
            output = (logits,) + outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return TXNLIClassifierOutput(
            loss=loss, logits=logits, logits_xnli=logits_xnli, hidden_states=outputs.hidden_states, attentions=outputs.attentions
        )

License

This model is licensed under the CC BY-SA 4.0 license. The text of the license can be found here.

Downloads last month
2,455
Safetensors
Model size
279M params
Tensor type
I64
·
F32
·

Datasets used to train Babelscape/mdeberta-v3-base-triplet-critic-xnli