Edit model card

LILT_on7

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan
  • Able caption: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2}
  • Eading: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 62}
  • Ext: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 102}
  • Mage caption: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 13}
  • Ub heading: {'precision': 0.2642706131078224, 'recall': 1.0, 'f1': 0.41806020066889626, 'number': 125}
  • Overall Precision: 0.2643
  • Overall Recall: 0.4112
  • Overall F1: 0.3218
  • Overall Accuracy: 0.2643

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Able caption Eading Ext Mage caption Ub heading Overall Precision Overall Recall Overall F1 Overall Accuracy
1.0142 0.44 500 nan {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 62} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 102} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 13} {'precision': 0.2642706131078224, 'recall': 1.0, 'f1': 0.41806020066889626, 'number': 125} 0.2643 0.4112 0.3218 0.2643
1.0228 0.89 1000 nan {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 62} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 102} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 13} {'precision': 0.2642706131078224, 'recall': 1.0, 'f1': 0.41806020066889626, 'number': 125} 0.2643 0.4112 0.3218 0.2643
1.0299 1.33 1500 nan {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 62} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 102} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 13} {'precision': 0.2642706131078224, 'recall': 1.0, 'f1': 0.41806020066889626, 'number': 125} 0.2643 0.4112 0.3218 0.2643
1.0233 1.78 2000 nan {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 62} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 102} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 13} {'precision': 0.2642706131078224, 'recall': 1.0, 'f1': 0.41806020066889626, 'number': 125} 0.2643 0.4112 0.3218 0.2643
0.9924 2.22 2500 nan {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 62} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 102} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 13} {'precision': 0.2642706131078224, 'recall': 1.0, 'f1': 0.41806020066889626, 'number': 125} 0.2643 0.4112 0.3218 0.2643
1.0081 2.67 3000 nan {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 62} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 102} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 13} {'precision': 0.2642706131078224, 'recall': 1.0, 'f1': 0.41806020066889626, 'number': 125} 0.2643 0.4112 0.3218 0.2643
0.9836 3.11 3500 nan {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 62} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 102} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 13} {'precision': 0.2642706131078224, 'recall': 1.0, 'f1': 0.41806020066889626, 'number': 125} 0.2643 0.4112 0.3218 0.2643
0.9997 3.56 4000 nan {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 62} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 102} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 13} {'precision': 0.2642706131078224, 'recall': 1.0, 'f1': 0.41806020066889626, 'number': 125} 0.2643 0.4112 0.3218 0.2643
0.984 4.0 4500 nan {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 62} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 102} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 13} {'precision': 0.2642706131078224, 'recall': 1.0, 'f1': 0.41806020066889626, 'number': 125} 0.2643 0.4112 0.3218 0.2643
0.9889 4.44 5000 nan {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 62} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 102} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 13} {'precision': 0.2642706131078224, 'recall': 1.0, 'f1': 0.41806020066889626, 'number': 125} 0.2643 0.4112 0.3218 0.2643

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
3
Safetensors
Model size
130M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.