metadata
tags:
- image-classification
- ecology
- animals
- re-identification
library_name: wildlife-datasets
license: cc-by-nc-4.0
Model card for MegaDescriptor-B-224
A Swin-L image feature model. Superwisely pre-trained on animal re-identification datasets.
Model Details
- Model Type: Animal re-identification / feature backbone
- Model Stats:
- Params (M): ??
- Image size: 384 x 384
- Papers:
- Swin Transformer: Hierarchical Vision Transformer using Shifted Windows --> https://arxiv.org/abs/2103.14030
- Original: ??
- Pretrain Dataset: All available re-identification datasets --> TBD
Model Usage
Image Embeddings
import timm
import torch
import torchvision.transforms as T
from PIL import Image
from urllib.request import urlopen
model = timm.create_model("hf-hub:BVRA/wildlife-mega", pretrained=True)
model = model.eval()
train_transforms = T.Compose([T.Resize(224),
T.ToTensor(),
T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
output = model(train_transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# output is a (1, num_features) shaped tensor
Citation
TBD