Edit model card

vit-base-patch16-224-in21k-finetuned-hongrui_mammogram_v_1

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7419
  • Accuracy: 0.6991
  • F1: 0.6767
  • Precision: 0.6830
  • Recall: 0.6991

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.8576 1.0 171 0.8431 0.6678 0.6067 0.7751 0.6678
0.8297 2.0 342 0.7965 0.6791 0.6182 0.6758 0.6791
0.8303 3.0 513 0.7872 0.6842 0.6360 0.6704 0.6842
0.7814 4.0 684 0.7717 0.6843 0.6597 0.6601 0.6843
0.7768 5.0 855 0.7694 0.6906 0.6544 0.6775 0.6906
0.7415 6.0 1026 0.7572 0.6962 0.6718 0.6764 0.6962
0.7351 7.0 1197 0.7549 0.6922 0.6569 0.6648 0.6922
0.7197 8.0 1368 0.7479 0.6986 0.6855 0.6926 0.6986
0.7087 9.0 1539 0.7445 0.6979 0.6697 0.6792 0.6979
0.6977 10.0 1710 0.7419 0.6991 0.6767 0.6830 0.6991

Multi Class ROC Curve

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
Unable to determine this model's library. Check the docs .

Model tree for BTX24/vit-base-patch16-224-in21k-finetuned-hongrui_mammogram_v_1

Finetuned
(1668)
this model

Dataset used to train BTX24/vit-base-patch16-224-in21k-finetuned-hongrui_mammogram_v_1