Adding Evaluation Results
#1
by
leaderboard-pr-bot
- opened
README.md
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
-
base_model: BEE-spoke-data/NanoLlama-GQA-L10-A32_KV8-v12-minipile
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
- smol_llama
|
7 |
- llama2
|
8 |
metrics:
|
9 |
- accuracy
|
|
|
10 |
inference:
|
11 |
parameters:
|
12 |
max_new_tokens: 64
|
@@ -17,43 +17,140 @@ inference:
|
|
17 |
eta_cutoff: 0.001
|
18 |
renormalize_logits: true
|
19 |
widget:
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
will they meet if the distance between the stations is 300 miles?
|
51 |
-
|
52 |
-
To determine
|
53 |
-
example_title: Math Problem
|
54 |
-
- text: In the context of computer programming, an algorithm is
|
55 |
-
example_title: Algorithm Definition
|
56 |
pipeline_tag: text-generation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
---
|
58 |
|
59 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -129,3 +226,17 @@ The following hyperparameters were used during training:
|
|
129 |
- Pytorch 2.1.0
|
130 |
- Datasets 2.15.0
|
131 |
- Tokenizers 0.15.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
- smol_llama
|
6 |
- llama2
|
7 |
metrics:
|
8 |
- accuracy
|
9 |
+
base_model: BEE-spoke-data/NanoLlama-GQA-L10-A32_KV8-v12-minipile
|
10 |
inference:
|
11 |
parameters:
|
12 |
max_new_tokens: 64
|
|
|
17 |
eta_cutoff: 0.001
|
18 |
renormalize_logits: true
|
19 |
widget:
|
20 |
+
- text: My name is El Microondas the Wise and
|
21 |
+
example_title: El Microondas
|
22 |
+
- text: Kennesaw State University is a public
|
23 |
+
example_title: Kennesaw State University
|
24 |
+
- text: Bungie Studios is an American video game developer. They are most famous for
|
25 |
+
developing the award winning Halo series of video games. They also made Destiny.
|
26 |
+
The studio was founded
|
27 |
+
example_title: Bungie
|
28 |
+
- text: The Mona Lisa is a world-renowned painting created by
|
29 |
+
example_title: Mona Lisa
|
30 |
+
- text: The Harry Potter series, written by J.K. Rowling, begins with the book titled
|
31 |
+
example_title: Harry Potter Series
|
32 |
+
- text: 'Question: I have cities, but no houses. I have mountains, but no trees. I
|
33 |
+
have water, but no fish. What am I?
|
34 |
+
|
35 |
+
Answer:'
|
36 |
+
example_title: Riddle
|
37 |
+
- text: The process of photosynthesis involves the conversion of
|
38 |
+
example_title: Photosynthesis
|
39 |
+
- text: Jane went to the store to buy some groceries. She picked up apples, oranges,
|
40 |
+
and a loaf of bread. When she got home, she realized she forgot
|
41 |
+
example_title: Story Continuation
|
42 |
+
- text: 'Problem 2: If a train leaves Station A at 9:00 AM and travels at 60 mph,
|
43 |
+
and another train leaves Station B at 10:00 AM and travels at 80 mph, when will
|
44 |
+
they meet if the distance between the stations is 300 miles?
|
45 |
+
|
46 |
+
To determine'
|
47 |
+
example_title: Math Problem
|
48 |
+
- text: In the context of computer programming, an algorithm is
|
49 |
+
example_title: Algorithm Definition
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
pipeline_tag: text-generation
|
51 |
+
model-index:
|
52 |
+
- name: NanoLlama-GQA-L10-A32_KV8-v13-KI
|
53 |
+
results:
|
54 |
+
- task:
|
55 |
+
type: text-generation
|
56 |
+
name: Text Generation
|
57 |
+
dataset:
|
58 |
+
name: AI2 Reasoning Challenge (25-Shot)
|
59 |
+
type: ai2_arc
|
60 |
+
config: ARC-Challenge
|
61 |
+
split: test
|
62 |
+
args:
|
63 |
+
num_few_shot: 25
|
64 |
+
metrics:
|
65 |
+
- type: acc_norm
|
66 |
+
value: 23.81
|
67 |
+
name: normalized accuracy
|
68 |
+
source:
|
69 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/NanoLlama-GQA-L10-A32_KV8-v13-KI
|
70 |
+
name: Open LLM Leaderboard
|
71 |
+
- task:
|
72 |
+
type: text-generation
|
73 |
+
name: Text Generation
|
74 |
+
dataset:
|
75 |
+
name: HellaSwag (10-Shot)
|
76 |
+
type: hellaswag
|
77 |
+
split: validation
|
78 |
+
args:
|
79 |
+
num_few_shot: 10
|
80 |
+
metrics:
|
81 |
+
- type: acc_norm
|
82 |
+
value: 29.39
|
83 |
+
name: normalized accuracy
|
84 |
+
source:
|
85 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/NanoLlama-GQA-L10-A32_KV8-v13-KI
|
86 |
+
name: Open LLM Leaderboard
|
87 |
+
- task:
|
88 |
+
type: text-generation
|
89 |
+
name: Text Generation
|
90 |
+
dataset:
|
91 |
+
name: MMLU (5-Shot)
|
92 |
+
type: cais/mmlu
|
93 |
+
config: all
|
94 |
+
split: test
|
95 |
+
args:
|
96 |
+
num_few_shot: 5
|
97 |
+
metrics:
|
98 |
+
- type: acc
|
99 |
+
value: 25.37
|
100 |
+
name: accuracy
|
101 |
+
source:
|
102 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/NanoLlama-GQA-L10-A32_KV8-v13-KI
|
103 |
+
name: Open LLM Leaderboard
|
104 |
+
- task:
|
105 |
+
type: text-generation
|
106 |
+
name: Text Generation
|
107 |
+
dataset:
|
108 |
+
name: TruthfulQA (0-shot)
|
109 |
+
type: truthful_qa
|
110 |
+
config: multiple_choice
|
111 |
+
split: validation
|
112 |
+
args:
|
113 |
+
num_few_shot: 0
|
114 |
+
metrics:
|
115 |
+
- type: mc2
|
116 |
+
value: 44.77
|
117 |
+
source:
|
118 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/NanoLlama-GQA-L10-A32_KV8-v13-KI
|
119 |
+
name: Open LLM Leaderboard
|
120 |
+
- task:
|
121 |
+
type: text-generation
|
122 |
+
name: Text Generation
|
123 |
+
dataset:
|
124 |
+
name: Winogrande (5-shot)
|
125 |
+
type: winogrande
|
126 |
+
config: winogrande_xl
|
127 |
+
split: validation
|
128 |
+
args:
|
129 |
+
num_few_shot: 5
|
130 |
+
metrics:
|
131 |
+
- type: acc
|
132 |
+
value: 51.14
|
133 |
+
name: accuracy
|
134 |
+
source:
|
135 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/NanoLlama-GQA-L10-A32_KV8-v13-KI
|
136 |
+
name: Open LLM Leaderboard
|
137 |
+
- task:
|
138 |
+
type: text-generation
|
139 |
+
name: Text Generation
|
140 |
+
dataset:
|
141 |
+
name: GSM8k (5-shot)
|
142 |
+
type: gsm8k
|
143 |
+
config: main
|
144 |
+
split: test
|
145 |
+
args:
|
146 |
+
num_few_shot: 5
|
147 |
+
metrics:
|
148 |
+
- type: acc
|
149 |
+
value: 0.91
|
150 |
+
name: accuracy
|
151 |
+
source:
|
152 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/NanoLlama-GQA-L10-A32_KV8-v13-KI
|
153 |
+
name: Open LLM Leaderboard
|
154 |
---
|
155 |
|
156 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
226 |
- Pytorch 2.1.0
|
227 |
- Datasets 2.15.0
|
228 |
- Tokenizers 0.15.0
|
229 |
+
|
230 |
+
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
|
231 |
+
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_BEE-spoke-data__NanoLlama-GQA-L10-A32_KV8-v13-KI)
|
232 |
+
|
233 |
+
| Metric |Value|
|
234 |
+
|---------------------------------|----:|
|
235 |
+
|Avg. |29.23|
|
236 |
+
|AI2 Reasoning Challenge (25-Shot)|23.81|
|
237 |
+
|HellaSwag (10-Shot) |29.39|
|
238 |
+
|MMLU (5-Shot) |25.37|
|
239 |
+
|TruthfulQA (0-shot) |44.77|
|
240 |
+
|Winogrande (5-shot) |51.14|
|
241 |
+
|GSM8k (5-shot) | 0.91|
|
242 |
+
|