vit-base-GTZAN
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.8328
- Accuracy: 0.7566
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 16
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.3756 | 0.09 | 10 | 2.2861 | 0.2116 |
2.3051 | 0.19 | 20 | 2.1907 | 0.3439 |
2.1219 | 0.28 | 30 | 2.0214 | 0.3175 |
2.0542 | 0.37 | 40 | 1.9059 | 0.4074 |
1.8132 | 0.47 | 50 | 1.8472 | 0.3862 |
1.8854 | 0.56 | 60 | 1.6832 | 0.4603 |
1.6981 | 0.65 | 70 | 1.6008 | 0.4974 |
1.5251 | 0.75 | 80 | 1.4685 | 0.5026 |
1.4463 | 0.84 | 90 | 1.3713 | 0.6138 |
1.4335 | 0.93 | 100 | 1.4270 | 0.4974 |
1.1147 | 1.03 | 110 | 1.2793 | 0.5926 |
1.3568 | 1.12 | 120 | 1.3360 | 0.5661 |
1.3077 | 1.21 | 130 | 1.4520 | 0.5079 |
1.2801 | 1.31 | 140 | 1.2765 | 0.5661 |
1.2894 | 1.4 | 150 | 1.1949 | 0.6138 |
1.2657 | 1.5 | 160 | 1.1937 | 0.6349 |
0.8784 | 1.59 | 170 | 1.2190 | 0.6032 |
1.1575 | 1.68 | 180 | 1.2268 | 0.6138 |
0.9848 | 1.78 | 190 | 1.0572 | 0.6561 |
0.9409 | 1.87 | 200 | 1.1609 | 0.6349 |
0.9448 | 1.96 | 210 | 1.2327 | 0.6085 |
1.0819 | 2.06 | 220 | 1.1699 | 0.5820 |
0.7485 | 2.15 | 230 | 1.1041 | 0.6508 |
0.8934 | 2.24 | 240 | 1.1672 | 0.5873 |
0.8609 | 2.34 | 250 | 1.1900 | 0.6190 |
0.7935 | 2.43 | 260 | 1.0623 | 0.6402 |
0.8013 | 2.52 | 270 | 0.9873 | 0.6878 |
0.6669 | 2.62 | 280 | 1.0078 | 0.6561 |
0.7847 | 2.71 | 290 | 1.1484 | 0.6085 |
0.7222 | 2.8 | 300 | 1.1295 | 0.6243 |
0.7844 | 2.9 | 310 | 0.9414 | 0.7249 |
0.8057 | 2.99 | 320 | 1.0504 | 0.6667 |
0.4843 | 3.08 | 330 | 0.9874 | 0.6508 |
0.6766 | 3.18 | 340 | 1.1496 | 0.6508 |
0.4818 | 3.27 | 350 | 1.0968 | 0.6878 |
0.5351 | 3.36 | 360 | 1.1394 | 0.6296 |
0.5035 | 3.46 | 370 | 0.9815 | 0.7090 |
0.4032 | 3.55 | 380 | 1.0882 | 0.6402 |
0.639 | 3.64 | 390 | 1.2611 | 0.6085 |
0.5156 | 3.74 | 400 | 1.0376 | 0.6561 |
0.4884 | 3.83 | 410 | 0.9506 | 0.6984 |
0.5875 | 3.93 | 420 | 0.8479 | 0.7513 |
0.6982 | 4.02 | 430 | 1.0895 | 0.6825 |
0.3966 | 4.11 | 440 | 0.9709 | 0.6984 |
0.377 | 4.21 | 450 | 0.9754 | 0.6772 |
0.3417 | 4.3 | 460 | 1.1687 | 0.6508 |
0.336 | 4.39 | 470 | 0.9826 | 0.6984 |
0.5201 | 4.49 | 480 | 1.1770 | 0.6614 |
0.1737 | 4.58 | 490 | 1.0491 | 0.6878 |
0.2545 | 4.67 | 500 | 1.1352 | 0.6984 |
0.3752 | 4.77 | 510 | 1.0300 | 0.6931 |
0.3667 | 4.86 | 520 | 1.0355 | 0.6825 |
0.2797 | 4.95 | 530 | 0.9882 | 0.6984 |
0.1646 | 5.05 | 540 | 1.0728 | 0.6984 |
0.2199 | 5.14 | 550 | 0.8328 | 0.7566 |
0.2191 | 5.23 | 560 | 0.9280 | 0.7460 |
0.12 | 5.33 | 570 | 1.0978 | 0.7037 |
0.2608 | 5.42 | 580 | 1.1158 | 0.6878 |
0.2 | 5.51 | 590 | 1.0873 | 0.7354 |
0.1899 | 5.61 | 600 | 1.0560 | 0.7143 |
0.1113 | 5.7 | 610 | 1.1144 | 0.7037 |
0.2279 | 5.79 | 620 | 1.2535 | 0.6667 |
0.1563 | 5.89 | 630 | 1.0803 | 0.7354 |
0.2182 | 5.98 | 640 | 1.3904 | 0.6349 |
0.1781 | 6.07 | 650 | 1.3461 | 0.6720 |
0.1395 | 6.17 | 660 | 1.2769 | 0.6825 |
0.2308 | 6.26 | 670 | 1.2213 | 0.6931 |
0.1899 | 6.36 | 680 | 1.0948 | 0.7143 |
0.1702 | 6.45 | 690 | 1.2383 | 0.6931 |
0.1055 | 6.54 | 700 | 1.4010 | 0.6349 |
0.1151 | 6.64 | 710 | 1.2607 | 0.6720 |
0.2415 | 6.73 | 720 | 1.0520 | 0.7302 |
0.117 | 6.82 | 730 | 1.0548 | 0.7354 |
0.184 | 6.92 | 740 | 1.1872 | 0.6984 |
0.1997 | 7.01 | 750 | 1.1128 | 0.7249 |
0.0645 | 7.1 | 760 | 1.1514 | 0.6984 |
0.1025 | 7.2 | 770 | 1.2252 | 0.7037 |
0.0407 | 7.29 | 780 | 1.0571 | 0.7513 |
0.1752 | 7.38 | 790 | 1.0812 | 0.7354 |
0.1143 | 7.48 | 800 | 1.2182 | 0.7143 |
0.1542 | 7.57 | 810 | 1.1789 | 0.7143 |
0.0859 | 7.66 | 820 | 1.1392 | 0.7196 |
0.119 | 7.76 | 830 | 1.1568 | 0.7354 |
0.0913 | 7.85 | 840 | 1.1097 | 0.6984 |
0.085 | 7.94 | 850 | 1.1189 | 0.7460 |
0.0201 | 8.04 | 860 | 1.1283 | 0.7143 |
0.0509 | 8.13 | 870 | 1.1005 | 0.7407 |
0.0326 | 8.22 | 880 | 1.0490 | 0.7302 |
0.0728 | 8.32 | 890 | 1.2511 | 0.7196 |
0.0486 | 8.41 | 900 | 1.1833 | 0.7143 |
0.0645 | 8.5 | 910 | 0.9881 | 0.7725 |
0.0194 | 8.6 | 920 | 1.0412 | 0.7566 |
0.0215 | 8.69 | 930 | 1.2485 | 0.7196 |
0.0853 | 8.79 | 940 | 1.0864 | 0.7672 |
0.0412 | 8.88 | 950 | 1.1796 | 0.7249 |
0.0645 | 8.97 | 960 | 1.3152 | 0.6878 |
0.0654 | 9.07 | 970 | 1.2789 | 0.6931 |
0.0352 | 9.16 | 980 | 1.1928 | 0.7196 |
0.0137 | 9.25 | 990 | 1.1643 | 0.7354 |
0.0227 | 9.35 | 1000 | 1.2256 | 0.7143 |
0.0391 | 9.44 | 1010 | 1.2089 | 0.7196 |
0.0163 | 9.53 | 1020 | 1.3880 | 0.6931 |
0.0225 | 9.63 | 1030 | 1.3944 | 0.6931 |
0.0348 | 9.72 | 1040 | 1.3257 | 0.7143 |
0.0354 | 9.81 | 1050 | 1.1538 | 0.7460 |
0.0412 | 9.91 | 1060 | 1.2372 | 0.7249 |
0.055 | 10.0 | 1070 | 1.2266 | 0.7090 |
0.0115 | 10.09 | 1080 | 1.2353 | 0.7249 |
0.011 | 10.19 | 1090 | 1.2655 | 0.7249 |
0.0105 | 10.28 | 1100 | 1.2831 | 0.7354 |
0.0248 | 10.37 | 1110 | 1.3138 | 0.7143 |
0.0287 | 10.47 | 1120 | 1.2472 | 0.7196 |
0.017 | 10.56 | 1130 | 1.1517 | 0.7619 |
0.0326 | 10.65 | 1140 | 1.1729 | 0.7513 |
0.0298 | 10.75 | 1150 | 1.1991 | 0.7460 |
0.0087 | 10.84 | 1160 | 1.1965 | 0.7196 |
0.0104 | 10.93 | 1170 | 1.2006 | 0.7302 |
0.0176 | 11.03 | 1180 | 1.2819 | 0.7196 |
0.0088 | 11.12 | 1190 | 1.2860 | 0.7249 |
0.0218 | 11.21 | 1200 | 1.1996 | 0.7407 |
0.011 | 11.31 | 1210 | 1.1905 | 0.7407 |
0.0195 | 11.4 | 1220 | 1.1777 | 0.7460 |
0.012 | 11.5 | 1230 | 1.1417 | 0.7566 |
0.0075 | 11.59 | 1240 | 1.1429 | 0.7619 |
0.0131 | 11.68 | 1250 | 1.1381 | 0.7672 |
0.0078 | 11.78 | 1260 | 1.1562 | 0.7566 |
0.0071 | 11.87 | 1270 | 1.1708 | 0.7619 |
0.04 | 11.96 | 1280 | 1.1965 | 0.7513 |
0.0066 | 12.06 | 1290 | 1.2295 | 0.7354 |
0.0179 | 12.15 | 1300 | 1.2337 | 0.7354 |
0.0072 | 12.24 | 1310 | 1.2376 | 0.7407 |
0.0189 | 12.34 | 1320 | 1.2402 | 0.7354 |
0.0067 | 12.43 | 1330 | 1.2426 | 0.7407 |
0.014 | 12.52 | 1340 | 1.2199 | 0.7460 |
0.0065 | 12.62 | 1350 | 1.2070 | 0.7513 |
0.0119 | 12.71 | 1360 | 1.2172 | 0.7513 |
0.0065 | 12.8 | 1370 | 1.2299 | 0.7460 |
0.0139 | 12.9 | 1380 | 1.2095 | 0.7513 |
0.0195 | 12.99 | 1390 | 1.1914 | 0.7513 |
0.0102 | 13.08 | 1400 | 1.1972 | 0.7513 |
0.0162 | 13.18 | 1410 | 1.2006 | 0.7566 |
0.0057 | 13.27 | 1420 | 1.2135 | 0.7566 |
0.0099 | 13.36 | 1430 | 1.2060 | 0.7566 |
0.0092 | 13.46 | 1440 | 1.2094 | 0.7513 |
0.0059 | 13.55 | 1450 | 1.2153 | 0.7460 |
0.0132 | 13.64 | 1460 | 1.2271 | 0.7513 |
0.0224 | 13.74 | 1470 | 1.2394 | 0.7460 |
0.0116 | 13.83 | 1480 | 1.2354 | 0.7460 |
0.0096 | 13.93 | 1490 | 1.2316 | 0.7460 |
0.0055 | 14.02 | 1500 | 1.2332 | 0.7460 |
0.009 | 14.11 | 1510 | 1.2355 | 0.7460 |
0.0058 | 14.21 | 1520 | 1.2447 | 0.7460 |
0.01 | 14.3 | 1530 | 1.2437 | 0.7460 |
0.0055 | 14.39 | 1540 | 1.2422 | 0.7460 |
0.0187 | 14.49 | 1550 | 1.2215 | 0.7513 |
0.0103 | 14.58 | 1560 | 1.2178 | 0.7513 |
0.0053 | 14.67 | 1570 | 1.2217 | 0.7460 |
0.01 | 14.77 | 1580 | 1.2267 | 0.7460 |
0.0238 | 14.86 | 1590 | 1.2279 | 0.7460 |
0.0091 | 14.95 | 1600 | 1.2242 | 0.7460 |
0.0053 | 15.05 | 1610 | 1.2232 | 0.7513 |
0.0101 | 15.14 | 1620 | 1.2257 | 0.7460 |
0.0189 | 15.23 | 1630 | 1.2277 | 0.7460 |
0.0056 | 15.33 | 1640 | 1.2336 | 0.7460 |
0.0052 | 15.42 | 1650 | 1.2353 | 0.7460 |
0.0054 | 15.51 | 1660 | 1.2359 | 0.7460 |
0.0054 | 15.61 | 1670 | 1.2362 | 0.7460 |
0.0102 | 15.7 | 1680 | 1.2348 | 0.7513 |
0.0193 | 15.79 | 1690 | 1.2326 | 0.7513 |
0.0104 | 15.89 | 1700 | 1.2315 | 0.7513 |
0.0095 | 15.98 | 1710 | 1.2312 | 0.7513 |
Framework versions
- Transformers 4.33.2
- Pytorch 2.2.0.dev20230912+cu121
- Datasets 2.14.5
- Tokenizers 0.13.3
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Aubay/vit-base-genre-eGTZANplus
Base model
google/vit-base-patch16-224-in21k