Edit model card

wav2vec2-base-Odia-large

This model is a fine-tuned version of facebook/wav2vec2-base-960h on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3174
  • Wer: 0.2448
  • Cer: 0.0666

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 6
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 3000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
6.2874 2.3622 300 3.3817 1.0 1.0
2.5772 4.7244 600 1.1573 0.7875 0.2934
0.8599 7.0866 900 0.6319 0.5302 0.1579
0.532 9.4488 1200 0.5208 0.4332 0.1278
0.374 11.8110 1500 0.4485 0.3917 0.1110
0.272 14.1732 1800 0.3939 0.3383 0.0928
0.2015 16.5354 2100 0.3646 0.3040 0.0824
0.152 18.8976 2400 0.3415 0.2700 0.0741
0.1146 21.2598 2700 0.3278 0.2584 0.0691
0.0939 23.6220 3000 0.3174 0.2448 0.0666

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 1.18.3
  • Tokenizers 0.19.1
Downloads last month
7
Safetensors
Model size
94.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Anujgr8/wav2vec2-base-Odia-large

Finetuned
(121)
this model