MAnet Model Card
Table of Contents:
Load trained model
import segmentation_models_pytorch as smp
model = smp.from_pretrained("<save-directory-or-this-repo>")
Model init parameters
model_init_params = {
"encoder_name": "resnet34",
"encoder_depth": 5,
"encoder_weights": "imagenet",
"decoder_use_batchnorm": True,
"decoder_channels": (256, 128, 64, 32, 16),
"decoder_pab_channels": 64,
"in_channels": 1,
"classes": 1,
"activation": None,
"aux_params": None
}
Model metrics
[
{
"test_per_image_iou": 0.774716317653656,
"test_dataset_iou": 0.7597809433937073
}
]
Dataset
Dataset name: Breast
More Information
- Library: https://github.com/qubvel/segmentation_models.pytorch
- Docs: https://smp.readthedocs.io/en/latest/
This model has been pushed to the Hub using the PytorchModelHubMixin
- Downloads last month
- 3
Inference API (serverless) does not yet support segmentation-models-pytorch models for this pipeline type.