RLXF
Collection
the best collection of RLXF model including RLHF, RLAIF etc.
•
3 items
•
Updated
•
1
task_type | metric | dataset_name | subset_name | average_score | count | average_score |
---|---|---|---|---|---|---|
math | AveragePass@1 | math_500 | default | 0.648 | 500 | |
math | AveragePass@1 | gpqa | gpqa_diamond | 0.2677 | 198 | 0.5192 |
math | AveragePass@1 | aime24 | default | 0.0333 | 30 |
task_type | metric | dataset_name | subset_name | average_score | count | average_score |
---|---|---|---|---|---|---|
math | AveragePass@1 | math_500 | default | 0.698 | 500 | |
math | AveragePass@1 | gpqa | gpqa_diamond | 0.3182 | 198 | 0.5714 |
math | AveragePass@1 | aime24 | default | 0.1333 | 30 |
task_type | metric | dataset_name | subset_name | average_score | count | average_score |
---|---|---|---|---|---|---|
math | AveragePass@1 | math_500 | default | 0.77 | 500 | |
math | AveragePass@1 | gpqa | gpqa_diamond | 0.2879 | 198 | 0.6113 |
math | AveragePass@1 | aime24 | default | 0.1 | 30 |
I use t1-3b as a base model which it is trained by using t1-101k.
I use the grpo algorithm in deepscaler.
the below is the grpo script:
CUDA_VISIBLE_DEVICES=2,3,4,5,6,7 python3 -m verl.trainer.main_ppo \
algorithm.adv_estimator=grpo \
data.train_files=/root/deepscaler/data/train.parquet \
data.val_files=/root/deepscaler/data/aime.parquet \
data.train_batch_size=96 \
data.val_batch_size=288 \
data.max_prompt_length=1024 \
data.max_response_length=8192 \
actor_rollout_ref.model.path=/workspace/R1/model/t1-3B \
actor_rollout_ref.actor.optim.lr=1e-6 \
actor_rollout_ref.model.use_remove_padding=True \
actor_rollout_ref.actor.ppo_mini_batch_size=48 \
actor_rollout_ref.actor.ppo_micro_batch_size=48 \
actor_rollout_ref.actor.use_dynamic_bsz=True \
actor_rollout_ref.actor.ppo_max_token_len_per_gpu=32768 \
actor_rollout_ref.actor.use_kl_loss=True \
actor_rollout_ref.actor.kl_loss_coef=0.001 \
actor_rollout_ref.actor.kl_loss_type=low_var_kl \
actor_rollout_ref.actor.ulysses_sequence_parallel_size=1 \
actor_rollout_ref.model.enable_gradient_checkpointing=True \
actor_rollout_ref.actor.fsdp_config.param_offload=False \
actor_rollout_ref.actor.fsdp_config.grad_offload=False \
actor_rollout_ref.actor.fsdp_config.optimizer_offload=False \
actor_rollout_ref.rollout.tensor_model_parallel_size=1 \
actor_rollout_ref.rollout.name=vllm \
actor_rollout_ref.rollout.temperature=0.6 \
actor_rollout_ref.rollout.val_temperature=0.6 \
actor_rollout_ref.rollout.gpu_memory_utilization=0.85 \
actor_rollout_ref.rollout.n=12 \
actor_rollout_ref.rollout.n_val=6 \
actor_rollout_ref.ref.fsdp_config.param_offload=True \
algorithm.kl_ctrl.kl_coef=0.001 \
trainer.critic_warmup=0 \
trainer.logger=['console','wandb'] \
trainer.project_name='t1-3b' \
trainer.experiment_name='t1-3b-grpo-8k' \
+trainer.val_before_train=True \
trainer.n_gpus_per_node=6 \
trainer.nnodes=1 \
trainer.save_freq=50 \
trainer.test_freq=50 \
trainer.default_hdfs_dir=null \
trainer.total_epochs=5
CUDA_VISIBLE_DEVICES=2,3,4,5,6,7 python3 -m verl.trainer.main_ppo \
algorithm.adv_estimator=grpo \
data.train_files=/root/deepscaler/data/train.parquet \
data.val_files=/root/deepscaler/data/aime.parquet \
data.train_batch_size=48 \
data.val_batch_size=144 \
data.max_prompt_length=1024 \
data.max_response_length=16384 \
actor_rollout_ref.model.path=/workspace/R1/deepscaler/checkpoints/t1-3b/t1-3b-grpo-8k/actor/global_step_450 \
actor_rollout_ref.actor.optim.lr=1e-6 \
actor_rollout_ref.model.use_remove_padding=True \
actor_rollout_ref.actor.ppo_mini_batch_size=48 \
actor_rollout_ref.actor.ppo_micro_batch_size=48 \
actor_rollout_ref.actor.use_dynamic_bsz=True \
actor_rollout_ref.actor.ppo_max_token_len_per_gpu=32768 \
actor_rollout_ref.actor.use_kl_loss=True \
actor_rollout_ref.actor.kl_loss_coef=0.001 \
actor_rollout_ref.actor.kl_loss_type=low_var_kl \
actor_rollout_ref.actor.ulysses_sequence_parallel_size=1 \
actor_rollout_ref.model.enable_gradient_checkpointing=True \
actor_rollout_ref.actor.fsdp_config.param_offload=False \
actor_rollout_ref.actor.fsdp_config.grad_offload=False \
actor_rollout_ref.actor.fsdp_config.optimizer_offload=False \
actor_rollout_ref.rollout.tensor_model_parallel_size=1 \
actor_rollout_ref.rollout.name=vllm \
actor_rollout_ref.rollout.temperature=0.6 \
actor_rollout_ref.rollout.val_temperature=0.6 \
actor_rollout_ref.rollout.gpu_memory_utilization=0.85 \
actor_rollout_ref.rollout.n=12 \
actor_rollout_ref.rollout.n_val=6 \
actor_rollout_ref.ref.fsdp_config.param_offload=True \
algorithm.kl_ctrl.kl_coef=0.001 \
trainer.critic_warmup=0 \
trainer.logger=['console','wandb'] \
trainer.project_name='t1-3b' \
trainer.experiment_name='t1-3b-grpo-16k' \
+trainer.val_before_train=True \
trainer.n_gpus_per_node=6 \
trainer.nnodes=1 \
trainer.save_freq=20 \
trainer.test_freq=20 \
trainer.default_hdfs_dir=null \
trainer.total_epochs=5
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 -m verl.trainer.main_ppo \
algorithm.adv_estimator=grpo \
data.train_files=/root/deepscaler/data/train.parquet \
data.val_files=/root/deepscaler/data/aime.parquet \
data.train_batch_size=16 \
data.val_batch_size=16 \
data.max_prompt_length=1024 \
data.max_response_length=31744 \
actor_rollout_ref.model.path=/workspace/R1/deepscaler/checkpoints/t1-3b/t1-3b-grpo-16k/actor/global_step_460 \
actor_rollout_ref.actor.optim.lr=1e-6 \
actor_rollout_ref.model.use_remove_padding=True \
actor_rollout_ref.actor.ppo_mini_batch_size=16 \
actor_rollout_ref.actor.ppo_micro_batch_size=16 \
actor_rollout_ref.actor.use_dynamic_bsz=True \
actor_rollout_ref.actor.ppo_max_token_len_per_gpu=32768 \
actor_rollout_ref.actor.use_kl_loss=True \
actor_rollout_ref.actor.kl_loss_coef=0.001 \
actor_rollout_ref.actor.kl_loss_type=low_var_kl \
actor_rollout_ref.actor.ulysses_sequence_parallel_size=1 \
actor_rollout_ref.model.enable_gradient_checkpointing=True \
actor_rollout_ref.actor.fsdp_config.param_offload=False \
actor_rollout_ref.actor.fsdp_config.grad_offload=False \
actor_rollout_ref.actor.fsdp_config.optimizer_offload=False \
actor_rollout_ref.rollout.tensor_model_parallel_size=1 \
actor_rollout_ref.rollout.name=vllm \
actor_rollout_ref.rollout.temperature=0.6 \
actor_rollout_ref.rollout.val_temperature=0.6 \
actor_rollout_ref.rollout.gpu_memory_utilization=0.6 \
actor_rollout_ref.rollout.n=8 \
actor_rollout_ref.rollout.n_val=8 \
actor_rollout_ref.ref.fsdp_config.param_offload=True \
algorithm.kl_ctrl.kl_coef=0.001 \
trainer.critic_warmup=0 \
trainer.logger=['console','wandb'] \
trainer.project_name='t1-3b' \
trainer.experiment_name='t1-3b-grpo-32k' \
+trainer.val_before_train=True \
trainer.n_gpus_per_node=8 \
trainer.nnodes=1 \
trainer.save_freq=20 \
trainer.test_freq=20 \
trainer.default_hdfs_dir=null \
trainer.total_epochs=5
I will release a tiny vlm( t1-vl-grpo ).