Edit model card

final_V4_resized_balanced_Bert_balanced_dataset-after-adding-new-words-text-classification-model

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.7809
  • Accuracy: 0.5419
  • F1: 0.5
  • Precision: 0.5
  • Recall: 0.5

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
1.8374 0.06 50 1.8580 0.1350 0.0735 0.0910 0.1771
1.1067 0.12 100 1.7265 0.4003 0.2554 0.3101 0.3385
0.5553 0.18 150 0.9466 0.7571 0.5029 0.5522 0.5495
0.2362 0.25 200 0.8960 0.8595 0.7592 0.7701 0.7770
0.2549 0.31 250 0.9180 0.8623 0.7585 0.7737 0.7785
0.1716 0.37 300 0.9975 0.8646 0.7807 0.7630 0.8138
0.2299 0.43 350 0.8119 0.8614 0.7843 0.7481 0.8354
0.1657 0.49 400 0.9501 0.8657 0.7878 0.7724 0.8215
0.1585 0.55 450 1.0274 0.8661 0.7962 0.7708 0.8367
0.1856 0.61 500 1.0357 0.8675 0.7948 0.7554 0.8510
0.1002 0.67 550 1.1383 0.8657 0.7978 0.7673 0.8423
0.1505 0.74 600 1.0459 0.8678 0.7981 0.7646 0.8477
0.1264 0.8 650 0.9859 0.8692 0.8048 0.7781 0.8467
0.13 0.86 700 1.0246 0.8678 0.7947 0.7569 0.8496
0.1151 0.92 750 0.5834 0.8764 0.8223 0.8837 0.8621
0.1776 0.98 800 1.0297 0.8675 0.7903 0.7773 0.8202
0.0488 1.04 850 1.0348 0.8700 0.8038 0.7724 0.8504
0.0752 1.1 900 1.1004 0.8675 0.7839 0.7725 0.8136
0.0696 1.17 950 1.1802 0.8701 0.8020 0.7756 0.8438
0.0743 1.23 1000 1.1167 0.8695 0.8065 0.7791 0.8490
0.0757 1.29 1050 1.1188 0.8704 0.8078 0.7795 0.8516
0.0757 1.35 1100 0.7870 0.8692 0.8062 0.7816 0.8460
0.0847 1.41 1150 1.0518 0.8698 0.8045 0.7791 0.8450
0.0502 1.47 1200 1.1333 0.8689 0.7993 0.7679 0.8469
0.0516 1.53 1250 1.2185 0.8626 0.7707 0.7217 0.8429
0.0841 1.6 1300 1.2722 0.8689 0.8026 0.7798 0.8404
0.1063 1.66 1350 1.2437 0.8690 0.8008 0.7808 0.8362
0.097 1.72 1400 1.1243 0.8684 0.7930 0.7836 0.8201
0.0746 1.78 1450 1.2221 0.8701 0.8072 0.7801 0.8498
0.0726 1.84 1500 0.7919 0.8676 0.8076 0.7799 0.8500
0.0779 1.9 1550 1.1613 0.8704 0.8092 0.7837 0.8500
0.0895 1.96 1600 1.0377 0.8704 0.8060 0.7788 0.8485
0.0481 2.02 1650 1.1583 0.8710 0.8087 0.7810 0.8520
0.0266 2.09 1700 1.1655 0.8687 0.8020 0.7734 0.8452
0.0403 2.15 1750 1.2421 0.8707 0.8066 0.7777 0.8509
0.0116 2.21 1800 1.2306 0.8701 0.8048 0.7778 0.8474
0.0287 2.27 1850 1.2461 0.8700 0.8057 0.7784 0.8487
0.0197 2.33 1900 1.2199 0.8612 0.7937 0.7568 0.8451
0.0325 2.39 1950 1.3021 0.8703 0.8051 0.7785 0.8472
0.0443 2.45 2000 1.2395 0.8703 0.8061 0.7771 0.8503
0.0189 2.52 2050 1.2496 0.8704 0.8052 0.7812 0.8449
0.0056 2.58 2100 1.2561 0.8706 0.8073 0.7772 0.8527
0.0188 2.64 2150 1.2711 0.8706 0.8053 0.7818 0.8443
0.0287 2.7 2200 1.2728 0.8706 0.8068 0.7781 0.8504
0.0487 2.76 2250 1.1602 0.8710 0.8074 0.7802 0.8499
0.0409 2.82 2300 1.0628 0.8706 0.8061 0.7760 0.8510
0.053 2.88 2350 1.1891 0.8707 0.8076 0.7779 0.8526
0.0109 2.94 2400 1.2429 0.8700 0.8065 0.7811 0.8476
0.0392 3.01 2450 1.2635 0.8709 0.8058 0.7759 0.8509
0.0237 3.07 2500 1.2678 0.8703 0.8023 0.7817 0.8386
0.007 3.13 2550 1.2495 0.8709 0.8077 0.7812 0.8497
0.009 3.19 2600 1.2368 0.8715 0.8091 0.7807 0.8529
0.0022 3.25 2650 1.2436 0.8707 0.8055 0.7829 0.8435
0.0175 3.31 2700 1.2469 0.8712 0.8079 0.7818 0.8493
0.0037 3.37 2750 1.2342 0.8710 0.8068 0.7781 0.8510
0.0091 3.44 2800 1.2489 0.8701 0.8041 0.7780 0.8459
0.0008 3.5 2850 1.2252 0.8709 0.8059 0.7742 0.8532
0.005 3.56 2900 1.2281 0.8696 0.8030 0.7693 0.8522
0.0004 3.62 2950 1.2746 0.8704 0.8052 0.7760 0.8501
0.0009 3.68 3000 1.2903 0.8706 0.8054 0.7760 0.8504
0.001 3.74 3050 1.2960 0.8712 0.8060 0.7780 0.8492
0.0002 3.8 3100 1.3036 0.8712 0.8060 0.7780 0.8492
0.0185 3.87 3150 1.3224 0.8701 0.8048 0.7797 0.8453
0.0013 3.93 3200 1.3236 0.8707 0.8064 0.7780 0.8503
0.0003 3.99 3250 1.3241 0.8710 0.8068 0.7780 0.8509
0.0128 4.05 3300 1.3175 0.8704 0.8075 0.7794 0.8504
0.0005 4.11 3350 1.3160 0.8709 0.8078 0.7797 0.8508
0.0147 4.17 3400 1.3180 0.8712 0.8078 0.7803 0.8505
0.0064 4.23 3450 1.3197 0.8710 0.8076 0.7793 0.8510
0.0009 4.29 3500 1.3245 0.8712 0.8080 0.7800 0.8512
0.0002 4.36 3550 1.3336 0.8712 0.8079 0.7820 0.8491
0.0131 4.42 3600 1.3113 0.8710 0.8076 0.7794 0.8511
0.0003 4.48 3650 1.3200 0.8712 0.8079 0.7820 0.8491
0.0005 4.54 3700 1.3258 0.8712 0.8080 0.7841 0.8472
0.0102 4.6 3750 1.3177 0.8712 0.8079 0.7797 0.8512
0.0161 4.66 3800 1.3042 0.8712 0.8077 0.7794 0.8512
0.0178 4.72 3850 1.3133 0.8710 0.8076 0.7794 0.8511
0.0067 4.79 3900 1.3154 0.8709 0.8076 0.7793 0.8510
0.0191 4.85 3950 1.3187 0.8715 0.8103 0.7843 0.8516
0.0048 4.91 4000 1.3218 0.8713 0.8091 0.7842 0.8492
0.0046 4.97 4050 1.3220 0.8715 0.8103 0.7843 0.8516

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
2
Safetensors
Model size
110M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .