Cybercrime LSTM + GloVe Model
This model is a Long Short-Term Memory (LSTM) model trained with GloVe embeddings for classifying cybercrime categories. It has been trained on various cybercrime data and aims to provide high accuracy in detecting and categorizing different cybercrime types.
Model Details
- Model Type: LSTM
- Embeddings: GloVe
- Categories: Offensive, botnet, DDoS, ransomware, vulnerability, non-cybercrime, etc.
Usage
This model can be used for cybercrime classification tasks.
Accuracy: 0.9803
Precision: 0.9804
Recall: 0.9803
F1 Score: 0.9803
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
df_org['label'] = df_org['label'].replace('unknown', 'not cybercrime') # Replace 'unknown' with 'not cybercrime'
:37: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass include_groups=False
to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.
df_balanced = df_org.groupby('label', group_keys=False).apply(lambda x: x.sample(max_samples, replace=True))
Epoch 1/10
158/158 [==============================] - 65s 316ms/step - loss: 1.4255 - accuracy: 0.5900 - val_loss: 0.9644 - val_accuracy: 0.8066
Epoch 2/10 158/158 [==============================] - 73s 461ms/step - loss: 0.6081 - accuracy: 0.8742 - val_loss: 0.3353 - val_accuracy: 0.9132
Epoch 3/10 158/158 [==============================] - 50s 316ms/step - loss: 0.2752 - accuracy: 0.9344 - val_loss: 0.1922 - val_accuracy: 0.9534
Epoch 4/10 158/158 [==============================] - 59s 376ms/step - loss: 0.1848 - accuracy: 0.9563 - val_loss: 0.1487 - val_accuracy: 0.9664
Epoch 5/10 158/158 [==============================] - 66s 419ms/step - loss: 0.1423 - accuracy: 0.9676 - val_loss: 0.1272 - val_accuracy: 0.9714
Epoch 6/10 158/158 [==============================] - 64s 408ms/step - loss: 0.1176 - accuracy: 0.9722 - val_loss: 0.1133 - val_accuracy: 0.9745
Epoch 7/10 158/158 [==============================] - 67s 422ms/step - loss: 0.0971 - accuracy: 0.9789 - val_loss: 0.1042 - val_accuracy: 0.9749
Epoch 8/10 158/158 [==============================] - 76s 479ms/step - loss: 0.0814 - accuracy: 0.9818 - val_loss: 0.0910 - val_accuracy: 0.9794
Epoch 9/10 158/158 [==============================] - 51s 324ms/step - loss: 0.0727 - accuracy: 0.9859 - val_loss: 0.0862 - val_accuracy: 0.9799
Epoch 10/10 158/158 [==============================] - 41s 260ms/step - loss: 0.0638 - accuracy: 0.9864 - val_loss: 0.0791 - val_accuracy: 0.9803
- Downloads last month
- 0